Answer:
The structure and function of the chromosome are different in both the prokaryotic chromosome and eukaryotic chromosome. They differ in their size as the genetic information they carry is different from one another.
Eukaryotic chromosome have a different shape from the prokaryotic chromosome as the bacterial chromosome is circular and less complex due to no histone found in prokaryotes as we see in the eukaryotic chromosome. SIze of the bacterial or prokaryotic chromosome is also small and not found in condensed form as these cells carry less genetic information than eukaryotic cells.
<span>I is dominant, i is recessive. The A's and B's are just show which allele I is. When there is just one dominant allele, it masks the recessive in blood typing. Remember IA and IB are codominant.
O is always ii
A is IAi (heterozygous) or IAIA (homozygous)
B is IBi (heterozygous) or IBIB (homozygous)
AB is always IAIB
Remember: You get one allele from each parent!
1. Father must be ii, mother must be ii, so all children must be ii.
2. Father is IAIA (the homozygous one), the mother is IBIB, so the only possibility for the children is IAIB, because you get one allele from the father and one from the mother.
3. Father is IAi, mother is IBi, so the children can be any of the blood types, because they can have all the combinations of genotypes.
4. Father is ii, mother is IAIB. Children can only be IAi or IBi.
5. Father is IAIB, mother is IAIB. Children can be IAIA, IBIB, or IAIB.
Example of Punnett square:
3. Father is type A, heterozygous, mother is type B, heterozygous
Father must be IAi (heterozygous)
Mother must be IBi (heterozygous)
_______IA ____ i
IB____ IBIA____IBi
i _____ IAi______ii
Sorry, that was difficult on here, hope it's understandable.
The father's alleles run across the top, the mother's are on the side, you follow to where they meet to find the possibilities for the children. IBIA (AB blood type), IBi (B), IAi (A), and ii (O) are the possibilities in this case.
Hope that helps!</span>
Answer:
When the flea bit someone, the <u><em>plague bacteria</em></u> would get transferred to that person.
<em>Hope this helps.</em>
Answer: B) there is a decrease in kinetic energy and the molecules get closer together.
Explanation: Kinetic energy is directly proportional to temperature, thus as temperature decreases, kinetic energy also decreases.
Gas is the state of matter in which particles are very loosely bound and hence can easily move past one another very easily and have highest kinetic energy.
Liquid is the state of matter in which particles are loosely bound and hence can move past one another easily and have high kinetic energy.
Solid is the state of matter in which particles are tightly bound and hence can not move easily and have low kinetic energy.
Thus on moving from gaseous to solid state, the kinetic energy decreases and the molecules get closer together.
Answer:
Their spores are produced in sac-shaped structures.
Their spores are produced in club-shaped structures.
Their reproductive cells have flagella.
Their reproductive cells have several nuclei.
They live in wet places.
They live in dry places.
Explanation:
The Chytridiomycota, often called chytrids, are unique among all fungi in having motile stages in their life cycles; no other fungi have this trait. These motile stages take the form of zoospores, single cells with a single posterior (at the rear) flagellum.