Answer:
It is easier to stop the bicycle moving at a lower velocity because it will require a <em>smaller force</em> to stop it when compared to a bicycle with a higher velocity that needs a<em> bigger force.</em>
Explanation:
The question above is related to "Newton's Law of Motion." According to the <em>Third Law of Motion</em>, whenever an object exerts a force on another object <em>(action force)</em>, an equal force is exerted against it. This force is of the same magnitude but opposite direction.
When it comes to moving bicycles, the force that stops their movement is called "friction." Applying the law of motion, the higher the speed, the higher the force<em> </em>that is needed to stop it while the lower the speed, the lower the force<em> </em>that is needed to stop it.
Average speed = total distance traveled/total time taken
it is the total distance traveled in a total time the total distance is attained
Answer:
Explanation:
1st one
What is your evidence?
Very heavy professional or restaurant pans will have iron handles, while those for home use will be made of brass or stainless steel. All are perfectly safe for oven use.
Explanation:
Resonance: Resonance is the phenomenon which occurs when the applied frequency on the object is equal to its natural frequency.
In the given problem, the singing of an opera singer caused a drinking glass to shatter.
This occurs due to the phenomenon resonance. The applied frequency of the singing of an opera singer on the drinking glass matches with the natural frequency of the drinking glass. It causes a glass to shatter.
The inflated balloon shrinks when it is placed in an ice bath with no change in atmospheric pressure.
<u>Explanation:</u>
When the inflated balloon is subjected to an ice bath, it shrinks. This is due to the fact that smaller volume gets occupied by the air/gas inside the balloon as the temperature decreases. Hence, causes the balloon walls to collapse.
An ice bath also lowers the overall air temperature of the balloon inside. As the temperature decreases, the air molecules move more slowly and with lower energy. Because of the particle's lower energy, their collisions with the walls are not enough to keep the inflated balloon.