Answer:
R = v^2 sin 2 theta / g
The range provides the distance a projectile can travel
R(max) = v^2 / g if theta = 45 deg
R = 2.7^2 / 9.8 = .74 m
Answer:
Explanation:
Formula and givens
- λ = c / f
- λ is the wavelength
- c = the speed of light
- f = the frequency
- c = 3*10^8
- f = 7.89 * 10^14
λ = ?
Solution
λ = 3*10^8 / 7.89*10^14
λ = 3*10^8/7.89*10^14
λ = 2.36 * 10^7
λ = 236 nanometers. What you use as your solution depends on what what you have been taught.
Answer:
A. not excludable and not rival in consumption.
Explanation:
That's a description of what makes the "Wankel engine" unique.
When it first came to the USA market, it came as the guts of a
new brand of car . . . the Mazda. I don't know if some, or all, or
none of today's Mazdas still use the Wankel 'rotary' engine.
Answer:
2.35 seconds
Explanation:
Remark
This is a question where direction matters. Let us call down + and up minus. It won't matter. The answer will be the same.
Formula
a = (vf - vi)/t
Givens
a = 9.8 m/s^2
vi = - 15 m/s
vf = 8m/s
Solution
9.8 = (8 - - 15)/t Multiply both sides by t
t * 9.8 = 23 Divide by 9.8
t = 23/9.8
t = 2.35 s