Answer:
Voltage of the secondary coil is 720 volts.
Explanation:
Number of turns in primary coil, N₁ = 60
Number of turns in secondary coil, N₂ = 360
Input rms voltage of primary coil, V₁ = 120 V
We have to find the output rms voltage of the secondary coil. The relationship between the number of coil and voltage is given by :


V₂ = output rms voltage of the secondary coil.
After solving above equation, we get :
V₂ = 720 V
Hence, the output rms voltage of the secondary coil is 720 volts.
Given:
ρ = 13.6 x 10³ kg/m³, density of mercury
W = 6.0 N, weight of the mercury sample
g = 9.81 m/s², acceleration due to gravity.
Let V = the volume of the sample.
Then
W = ρVg
or
V = W/(ρg)
= (6.0 N)/[(13.6 x 10³ kg/m³)*(9.81 m/s²)]
= 4.4972 x 10⁻⁵ m³
Answer: The volume is 44.972 x 10⁻⁶ m³
Answer:
green light have high energy
Explanation:
We have given the wavelength of the red light 
Speed of the light 
The energy of the signal is given by 
The frequency of the green light is given by:

So energy 
So green light have high energy
When an object is falling and reaches a constant velocity, the net force on the object is <em>zero</em> (it's not accelerating), and the weight of the object is equal to <em>the force of air resistance against the object</em>. (choice-D)