Answer:
People firstly believe that the planets move in a circular orbit until Newton came up with his hypothesis by inventing calculus so that we could understood and calculated planetary orbits and their accuracy.
Explanation:
- Everyone assumed the planets were perfect circles until Newton came up with an idea. Slowly people would make maps of the orbits that added circles on circles, and they could never really explain about the movement of the planet. They simply say that planets move on circles but they lacked the math to explain or prove it. Then Newton came up with an idea of inventing calculus so that we could understood and calculated planetary orbits and their accuracy.
-
- Firstly people used their observations and say that the orbits looked like circles, then they developed their models and did the math, and proposed their hypothesizes which were wrong, until Newton came along and tried to match a model that used elliptical orbits and invented the math that allowed him to make predictions with it. His model worked for most planets.
-
- However he could not explain about the planet Mercury for instance since it was a very strange orbit. Then after the Einstein's theory of General Relativity he could also explain very deeply about it.
-
- Scientists and Astronomers made hypothesizes that there was another planet orbiting too close to the sun to see with telescopes, called Vulcan, that explained mercury's orbit before Einstein's theory. Then long after we had telescopes which was good enough to see if there was a planet orbiting closer to the sun than mercury.
I think it false. Sorry if i'm wrong.
1. white
2. colors
3. reflecting
4. light
5. waves interferences
6. reflect
7. add
8. brighter
9. cancel
The friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 × 10^8 respectively. Also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 × 10^8 respectively.
<h3>How to determine the friction factor</h3>
Using the formula
μ = viscosity = 0. 06 Pas
d = diameter = 120mm = 0. 12m
V = velocity = 1m/s and 3m/s
ρ = density = 0.9
a. Velocity = 1m/s
friction factor = 0. 52 × 
friction factor = 0. 52 × 
friction factor = 0. 52 × 0. 55
friction factor 
b. When V = 3mls
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 0. 185
Friction factor 
Loss When V = 1m/s
Head loss/ length = friction factor × 1/ 2g × velocity^2/ diameter
Head loss = 0. 289 ×
×
× 
Head loss = 1. 80 × 10^8
Head loss When V = 3m/s
Head loss =
×
×
× 
Head loss = 5. 3× 10^8
Thus, the friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 ×10^8 respectively also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 ×10^8 respectively.
Learn more about friction here:
brainly.com/question/24338873
#SPJ1
Answer:
Straight line in the direction of the tangential velocity the ball had at the moment the string broke
Explanation:
After the string breaks, the ball now disconnected from the centripetal force that was exerted via the string, continues its travel in a straight line in the direction of the tangential velocity it had at the moment the string broke.