Answer:
1.4s
Explanation:
Given parameters:
Mass of ball = 2kg
Force = 8N
Time = 0.35s
Unknown:
Change in velocity = ?
Solution:
To solve this problem, we use the expression obtained from Newton's second law of motion which is shown below:
Ft = m(v - u)
So;
Ft = m Δv
F is the force
t is the time
m is the mass
Δv is the change in velocity
8 x 0.35 = 2 x Δv
Δv = 1.4s
the branch of optics that studies interference, diffraction, polarization, and other phenomena for which the ray approximation of geometric optics is not valid.
Answer:
M = 0.730*m
V = 0.663*v
Explanation:
Data Given:

Conservation of Momentum:

Energy Balance:

Substitute Eq 2 into Eq 1

Using Eq 1

Answer:
The average acceleration of the bearings is 
Explanation:
Given that,
Height = 1.94 m
Bounced height = 1.48 m
Time interval 
Velocity of the ball bearing just before hitting the steel plate
We need to calculate the velocity
Using conservation of energy

Put the value into the formula



Negative as it is directed downwards
After bounce back,
We need to calculate the velocity
Using conservation of energy

Put the value into the formula



We need to calculate the average acceleration of the bearings while they are in contact with the plate
Using formula of acceleration

Put the value into the formula



Hence,The average acceleration of the bearings is 