Explanation:
The temperature of the molten iron remained constant at 2750°C because of the heat absorbed to effect the phase change and not to change the temperature.
The heat of vaporization is a latent or hidden heat absorbed by substances that causes a phase change from liquid to gas.
- In essence, the heat is used to break intermolecular bonds between the particles of the melted vat.
- If enough heat is no supplied the molten vat will not boil off and become vapor.
- In transitioning from liquid to gas, heat is absorbed by a body to effect the phase change.
- When the body acquires enough heat, the particles are able to break off and boil.
- At the 2750°C mark, this is what is happening.
learn more:
Specific heat brainly.com/question/7210400
#learnwithBrainly
Answer:
2-methylene propylbenzene
Explanation:
The Wittig Reaction is a reaction that converts aldehydes and ketones into alkenes through reaction with a phosphorus ylide.
The ketone in this case is 1-phenylpropan-1-one. The provided phosphonium ylide is shown in the image attached. The reaction involves;
i) alkylation
ii) addition
The product of the major organic product of the reaction is 2-methylene propylbenzene.
Concrete is formed of sand. Is it incorrect to suggest that some houses are built using concrete blocks?
<u>Answer:</u> The heat of hydrogenation of the reaction is coming out to be 234.2 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_{(product)}]-\sum [n\times \Delta H_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_{(C_4H_{10})})]-[(1\times \Delta H_{(C_4H_6)})+(2\times \Delta H_{(H_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_%7B10%7D%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_6%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_%7B%28H_2%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-2877.6))]-[(1\times (-2540.2))+(2\times (-285.8))]\\\\\Delta H_{rxn}=234.2J](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-2877.6%29%29%5D-%5B%281%5Ctimes%20%28-2540.2%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D234.2J)
Hence, the heat of hydrogenation of the reaction is coming out to be 234.2 kJ.