The smallest particle of an element that still retains the chemical properties of it is an atom.
Answer:
Where Blocal = local magnetic field between the two regions of the molecule
Blocal = (1-σ)B0
ΔBlocal = (1-σ1)B0 - (1-σ2)B0 = (σ2 - σ1)B0 = ΔσB0 ≈ ΔδB0 x 10∧-6
= (3.36-1.16) x 10∧-6 x B0 = 2.20 x 10∧-6B0
(a) ΔBlocal = 2.20 x 10∧-6 x 1.9T = 4.2 μT
(b) ΔBlocal = 2.20 x 10∧-6 x 16.5T = 36.3 μT
Explanation:
Answer:
Whether you get the metal or hydrogen during electrolysis depends on the position of the metal in the reactivity series: the metal will be produced if it is less reactive than hydrogen. hydrogen will be produced if the metal is more reactive than hydrogen.
Sodium Sulfate
= Na2(SO4) meaning there are two ions of Na+ in one mole of Sodium Sulfate the M
stands for Molarity, defined as Molarity = (moles of solute)/(Liters of
solution), So if the Na2SO4 solution is 3.65M that means one Liter of has 3.65
moles of Na2SO4, the stoichiometry of Na2SO4 shows that there would be two Na+
ions in solution for every one Na2SO4.
Therefore if
3.65 moles of Na2SO4 was to dissolve, it would produce 7.3 moles of Na+, and
since this is still a theoretical solution, we can assume 1 L of solution.
Finally we find
[Na+] = 2*3.65 = 7.3M
Use the same
logic for parts b and c