No se si aun necesitas ayuda o no
Answer:it is sterilized in the process
Explanation:
Answer:
65.08 g.
Explanation:
- For the reaction, the balanced equation is:
<em>2AlCl₃ + 3Br₂ → 2AlBr₃ + 3Cl₂,</em>
2.0 mole of AlCl₃ reacts with 3.0 mole of Br₂ to produce 2.0 mole of AlBr₃ and 3.0 mole of Cl₂.
- Firstly, we need to calculate the no. of moles of 36.2 grams of AlCl₃:
<em>n = mass/molar mass</em> = (36.2 g)/(133.34 g/mol) = <em>0.2715 mol.</em>
<u><em>Using cross multiplication:</em></u>
2.0 mole of AlCl₃ reacts with → 3.0 mole of Br₂, from the stichiometry.
0.2715 mol of AlCl₃ reacts with → ??? mole of Br₂.
∴ The no. of moles of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = (0.2715 mol)(3.0 mole)/(2.0 mole) = 0.4072 mol.
<em>∴ The mass of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = no. of moles of Br₂ x molar mass</em> = (0.4072 mol)(159.808 g/mol
) = <em>65.08 g.</em>
Mass of aspirin = 0.025 g
Molar mass of C9H8O4 is 180.1583 g/mol
moles of aspirin = .025g / 180.1583 g/mol = 0.000138767 moles
volume solution = .250 L
molarity of the solution = 0.000138767 moles / .250L =5.551 x 10 ^-04 Moles / liter
for aspirin i = Vant'Hoff factor = 1 particle in solution
T = 25 + 273 =298 K
osmotic pressure = M x R x T x i =
5.551 x 10 ^-04 mole L -1 x 0.08206 L atm K−1 mol−1 x 298 K x 1 = 0.0136 atmospheres
Al(NO3)3(aq) + 3NaOH(s) --> Al(OH)3 (s) + 3NaNO3 (aq)
The precipitate here is Al(OH)3 (s), since the solid reactant is the precipitate in the aqueous solution. Usually, it is okay to assume in basic chemistry that the transition metal is going to be part of the compound that is the precipitate, especially in an acidic salt and a strong base reaction that we have here.