Answer:
Explanation:
We know that , for an object to remain in circular motion , a force towards centre is required which is called centripetal force. In the circular motion of
satellites around planet , this force is provided by the gravitational attraction between satellite and planet.
If M be the mass of planet and m be the mass of satellite, G be gravitational constant and R be the distance between planet and satellite or R be the radius of orbit
Gravitational force = G Mm / R²
If v be the velocity with which satellite is orbiting
centripetal force
= m v² /R
Centripetal force = gravitational attraction
m v² /R = G Mm / R²
v = 
Time period = time the satellite takes to make one rotation
= distance / orbital velocity
= 2πR/ v
= 
T = 
I believe Cuba and the Bahamas.
The correct answer to the question is : C) The horizontal momentum and the vertical momentum are both conserved.
EXPLANATION :
Before coming into any conclusion, first we have to understand the law of conservation of momentum.
As per the law of conservation of momentum, the total linear as well as angular momentum of an isolated system is always conserved . The law of conservation of energy is a universal fact.
Hence, during any type of collision, the total momentum is always conserved.
Hence, the total horizontal momentum as well as total vertical momentum are always conserved during both elastic as well as inelastic collision.
Galaxy million of star and planet. gravitional wave field all the universe some planet explosive itself moving other places . Black holes Mass gravity field
Answer: B - 8
Explanation: 8 protons because number of protons is equal to number of atoms in the nucleus.