Answer:
magnifying glass
Explanation:
makes objects bigger and smaller / used in science
Answer: 363 Ω.
Explanation:
In a series AC circuit excited by a sinusoidal voltage source, the magnitude of the impedance is found to be as follows:
Z = √((R^2 )+〖(XL-XC)〗^2) (1)
In order to find the values for the inductive and capacitive reactances, as they depend on the frequency, we need first to find the voltage source frequency.
We are told that it has been set to 5.6 times the resonance frequency.
At resonance, the inductive and capacitive reactances are equal each other in magnitude, so from this relationship, we can find out the resonance frequency fo as follows:
fo = 1/2π√LC = 286 Hz
So, we find f to be as follows:
f = 1,600 Hz
Replacing in the value of XL and Xc in (1), we can find the magnitude of the impedance Z at this frequency, as follows:
Z = 363 Ω
That statement is true
Retinal disparity : space between your eyes that allow binocular vision to create depth perception
Retinal Convergence : Space between your eyes that signal visual moves to the retina
They both will increases as an object get closer to the individual, allowing them acknowledge and observe the existence of the object
The velocity of the ball is 12.5 m/s
Explanation:
The velocity of the ball is given by the ratio between the distance covered by the ball and the time taken:

First, we calculate the distance covered. We know that the radius of the circle is
r = 0.450 m
And the length of the circumference is

The ball makes 25.0 revolutions, so a total distance of

In a time of
t = 9.37 s
So, its velocity is

Learn more about velocity here:
brainly.com/question/5248528
#LearnwithBrainly
The statement would be False. T<span>he potential energy of a membrane potential comes solely from the difference in electrical charge across the membrane. In addition to that, membrane potential actually regulates the potential difference of nerve cells across the membrane estimated at 70 mV.</span>