Answer:
0.075 moles of iron oxide would be produced by complete reaction of 0.15 moles of iron.
Explanation:
The balanced reaction is:
4 Fe + 3 O₂ → 2 Fe₂O₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Fe: 4 moles
- O₂: 3 moles
- Fe₂O₃: 2 moles
You can apply the following rule of three: if by stoichiometry 4 moles of Fe produce 2 moles of Fe₂O₃, 0.15 moles of Fe produce how many moles of Fe₂O₃?

moles of Fe₂O₃= 0.075
<u><em>0.075 moles of iron oxide would be produced by complete reaction of 0.15 moles of iron.</em></u>
The combustion of 1 mole of methane (CH4) in a domestic furnace requires 2 moles of O2 molecules, assuming the combustion was complete or ideal. To solve this problem, use stoichiometry of the reaction's balanced chemical equation:
CH4 + 2O2 --> CO2 + 2H2O
The ratio of CH4 to O2 in terms of moles is 1:2. So 1 mole of CH4 needs 2 moles of O2.
Answer: NH3
Explanation: N2 + H2 yields NH3.