2C4H10 + 13O2 = 8CO2 + 10H2O
1. (2.06g C4H10)/(58.12 g/mol C4H10) = 0.035mol C4H10
2. (0.035molC4H10)(10 mol H2O/2mol C4H10) = 0.177mol H2O
3. (0.177mol H2O)(18.01g/mol H2O) = 3.19g H2O
Are you kidding me is this answer or question you got be kidding
The equation is: C+O2=>CO2
Since we got 10 molecules of CO2 new balanced equation would be 10C+10O2=>10CO2
from this equation we can see that we have 10 molecules of oxygen, however ,we need to find atoms. There are 2 atoms in the oxygen molecule so we need to multiply 10 by 2 which gives us 20 atoms.
The answer: there are 20 atoms of oxygen
The correct option is D.
The hydrogen atoms that are attached to the nitrogen atom in the ammonia molecule are capable of forming hydrogen bond. The hydrogen bond that exist in the ammonia molecule is the reason why it shows higher boiling point compare to the other hydrides. Hydrogen bond occur in ammonia because ammonia is one of the most electronegative elements.
Answer:
The heat released by the combustion is 20,47 kJ
Explanation:
Bomb calorimeter is an instrument used to measure the heat of a reaction. The formula is:
Q = C×m×ΔT + Cc×ΔT
Where:
Q is the heat released
C is specific heat of water (4,186kJ/kg°C)
m is mass of water (1,00kg)
ΔT is temperature change (23,65°C - 20,45°C)
And Cc is heat capacity of the calorimeter (2,21kJ/°C)
Replacing these values the heat released by the combustion is:
<em>Q = 20,47 kJ</em>