Answer:
N₂ = 6.022 × 10²³ molecules
H₂ = 18.066 × 10²³ molecules
NH₃ = 12.044 × 10²³ molecules
Explanation:
Chemical equation;
N₂ + 3H₂ → 2NH₃
It can be seen that there are one mole of nitrogen three mole of hydrogen and two moles of ammonia are present in this equation. The number of molecules of reactant and product would be calculated by using Avogadro number.
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
Number of molecules of nitrogen gas:
1 mol = 6.022 × 10²³ molecules
Number of molecules of hydrogen:
3 mol × 6.022 × 10²³ molecules/ 1 mol
18.066 × 10²³ molecules
Number of molecules of ammonia:
2 mol × 6.022 × 10²³ molecules/ 1 mol
12.044 × 10²³ molecules
1) As can be seen from any 1H NMR chemical shift ppm tables, hydrogens which have δ values from 2ppm to 2.3ppm are hydrogens from carbon which is bonded to a carbonyl group. From this, we can conclude that our hydrogens belong to the type, but from 2 different alkyl groups because of 2 different signals.
2) So, one alkyl group is CH3 and second one can be CH or CH2.
3) If we know that ratio between two types of hydrogens is 3:2, it can be concluded that second alkyl group is CH2.
4) Finally, we don't have any other signals and it indicates that part of the compound which continues on CH2 is exactly the same as the first part.
The ratio remains the same, 3:2 ie 6:4
Answer:
In our Sun, as in other stars, roughly 99.9% or so of all light emitted is emitted in a thin layer known as the photosphere, or light sphere. This is explained as follows. Interior to the photosphere the gas is ever denser and becomes far too opaque for any photon to emerge directly from that layer.
Explanation:
Answer:

Explanation:
Hello,
In this case, it is widely known that for isochoric processes, the change in the enthalpy is computed by:

Whereas the change in the internal energy is computed by:
So we compute the initial and final temperatures for one mole of the ideal gas:

Next, the change in the internal energy, since the volume-constant specific heat could be assumed as ³/₂R:

Then, the volume-pressure product in Joules:

Finally, the change in the enthalpy for the process:

Best regards.