The average sedentary male will achieve a VO2 max of approximately 35 to 40 mL/Kg/min. And the average sedentary female will score a VO2 max of between 27 an 30 mL/Kg/min.
Answer:
D
Explanation:
The electrons revolve around the nucleus and they contain negative charge
The single most important factor influencing potassium ion secretion is its concentration in blood plasma.
<h3>
What is Plasma?</h3>
This is the liquid portion of the blood and serves as the transport medium for nutrients in the body.
When there is a high concentration in the plasma, it maximizes the concentration gradient which favors its secretion into the urinary fluid.
Read more about Plasma here brainly.com/question/2901507
Answer : The correct option is, (D) 100 times the original content.
Explanation :
As we are given the pH of the solution change. Now we have to calculate the ratio of the hydronium ion concentration at pH = 5 and pH = 3
As we know that,
![pH=-\log [H_3O^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH_3O%5E%2B%5D)
The hydronium ion concentration at pH = 5.
![5=-\log [H_3O^+]](https://tex.z-dn.net/?f=5%3D-%5Clog%20%5BH_3O%5E%2B%5D)
..............(1)
The hydronium ion concentration at pH = 3.
![3=-\log [H_3O^+]](https://tex.z-dn.net/?f=3%3D-%5Clog%20%5BH_3O%5E%2B%5D)
................(2)
By dividing the equation 1 and 2 we get the ratio of the hydronium ion concentration.
![\frac{[H_3O^+]_{original}}{[H_3O^+]_{final}}=\frac{1\times 10^{-5}}{1\times 10^{-3}}=\frac{1}{100}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH_3O%5E%2B%5D_%7Boriginal%7D%7D%7B%5BH_3O%5E%2B%5D_%7Bfinal%7D%7D%3D%5Cfrac%7B1%5Ctimes%2010%5E%7B-5%7D%7D%7B1%5Ctimes%2010%5E%7B-3%7D%7D%3D%5Cfrac%7B1%7D%7B100%7D)
![100\times [H_3O^+]_{original}=[H_3O^+]_{final}](https://tex.z-dn.net/?f=100%5Ctimes%20%5BH_3O%5E%2B%5D_%7Boriginal%7D%3D%5BH_3O%5E%2B%5D_%7Bfinal%7D)
From this we conclude that when the pH of a solution changes from a pH of 5 to a pH of 3, the hydronium ion concentration is 100 times the original content.
Hence, the correct option is, (D) 100 times the original content.
Although lipids hold the majority of the body's energy reserves, glycogen is the body's primary energy source.
Glucose is a polymer that makes up glycogen. Our body's primary source of energy is carbs. The remaining glucose in the body is turned into glycogen and stored in various places, but the majority of our body's energy reserves are found in fats, which are kept in the form of lipids.
Where does the energy come from in the muscles?
The chemical energy that is stored in our meals is used by muscles to produce heat and motion energy (kinetic energy). Energy is necessary for maintaining body temperature, promoting physical activity, and enabling tissue growth and repair. Foods high in protein, fat, and carbohydrates provide energy.
What Takes Place to Muscles in the Absence of Glucose?
Your body converts carbs, such as those found in bread or fruit, into glucose after consumption. Glycogen is the form of glucose that is stored in your muscles and liver and is used for energy when you are not eating or while you are exercising.
To learn more about source of energy in body, visit
brainly.com/question/7493628
#SPJ13