Answer:
The order of reactivity towards electrophilic susbtitution is shown below:
a. anisole > ethylbenzene>benzene>chlorobenzene>nitrobenzene
b. p-cresol>p-xylene>toluene>benzene
c.Phenol>propylbenzene>benzene>benzoic acid
d.p-chloromethylbenzene>p-methylnitrobenzene> 2-chloro-1-methyl-4-nitrobenzene> 1-methyl-2,4-dinitrobenzene
Explanation:
Electron donating groups favor the electrophilic substitution reactions at ortho and para positions of the benzene ring.
For example: -OH, -OCH3, -NH2, Alkyl groups favor electrophilic aromatic substitution in benzene.
The -I (negative inductive effect) groups, electron-withdrawing groups deactivate the benzene ring towards electrophilic aromatic substitution.
Examples: -NO2, -SO3H, halide groups, Carboxylic acid groups, carbonyl gropus.
Answer:
2n² means 2 × n × n . the power on the n represent the no. of time it is multiplied.
for ex 3x² = 3 × x × x
4x⁴ = 4 × X× X × X× X
Only the temperature of gas
Answer:
a) The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) 0.0035 mole
c) 0.166 M
Explanation:
Phosphoric acid is tripotic because it has 3 acidic hydrogen atom surrounding it.
The equation of the reaction is expressed as:

1 mole 3 mole
The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) if 10.00 mL of a phosphoric acid solution required the addition of 17.50 mL of a 0.200 M NaOH(aq) to reach the endpoint; Then the molarity of the solution is calculated as follows

10 ml 17.50 ml
(x) M 0.200 M
Molarity = 
= 0.0035 mole
c) What was the molar concentration of phosphoric acid in the original stock solution?
By stoichiometry, converting moles of NaOH to H₃PO₄; we have
= 
= 0.00166 mole of H₃PO₄
Using the molarity equation to determine the molar concentration of phosphoric acid in the original stock solution; we have:
Molar Concentration = 
Molar Concentration = 
Molar Concentration = 0.166 M
∴ the molar concentration of phosphoric acid in the original stock solution = 0.166 M