The first law states that the total increase in the energy of a system is equal to the increase in thermal energy, meaning that heat is a form of energy and is therefore subject to the the principle of conservation
Answer:
Three types of metamorphism exist: contact, dynamic, and regional. Metamorphism produced with increasing pressure and temperature conditions is known as prograde metamorphism.
Answer:
The pH of the solution is 11.48.
Explanation:
The reaction between NaOH and HCl is:
NaOH + HCl → H₂O + NaCl
From the reaction of 3.60x10⁻³ moles of NaOH and 5.95x10⁻⁴ moles of HCl we have that all the HCl will react and some of NaOH will be leftover:

Now, we need to find the concentration of the OH⁻ ions.
![[OH^{-}] = \frac{n_{NaOH}}{V}](https://tex.z-dn.net/?f=%20%5BOH%5E%7B-%7D%5D%20%3D%20%5Cfrac%7Bn_%7BNaOH%7D%7D%7BV%7D%20)
Where V is the volume of the solution = 1.00 L
![[OH^{-}] = \frac{n_{NaOH}}{V} = \frac{3.01 \cdot 10^{-3} moles}{1.00 L} = 3.01 \cdot 10^{-3} mol/L](https://tex.z-dn.net/?f=%20%5BOH%5E%7B-%7D%5D%20%3D%20%5Cfrac%7Bn_%7BNaOH%7D%7D%7BV%7D%20%3D%20%5Cfrac%7B3.01%20%5Ccdot%2010%5E%7B-3%7D%20moles%7D%7B1.00%20L%7D%20%3D%203.01%20%5Ccdot%2010%5E%7B-3%7D%20mol%2FL%20)
Finally, we can calculate the pH of the solution as follows:
![pOH = -log([OH^{-}]) = -log(3.01 \cdot 10^{-3}) = 2.52](https://tex.z-dn.net/?f=%20pOH%20%3D%20-log%28%5BOH%5E%7B-%7D%5D%29%20%3D%20-log%283.01%20%5Ccdot%2010%5E%7B-3%7D%29%20%3D%202.52%20)


Therefore, the pH of the solution is 11.48.
I hope it helps you!
Answer:
The hotter the substance, the more its molecules vibrate, and therefore the higher thermal energy
:)