Answer:
5 × 10^-4 L
Explanation:
The equation of the reaction is;
2KClO3 = 2KCl + 3O2
Number of moles of KClO3 = 13.5g/122.5 g / mol = 0.11 moles
From the stoichiometry of the reaction;
2 moles of KClO3 yields 3 moles of O2
0.11 moles of KClO3 yields 0.11 × 3/2 = 0.165 moles of oxygen gas
From the ideal gas equation;
PV= nRT
P= 85.4 × 10^4 KPa
V=?
n= 0.165
R= 8.314 J K-1 mol-1
T= 40+273 = 313K
V= 0.165 ×8.134 × 313/85.4 × 10^4
V=429.4/85.4 × 10^4
V= 5 × 10^-4 L
Answer:
22.5moles
Explanation:
using mole ratio,n(CO2)/n(o)=1/2
n(CO2)=1/2n(02)
n(CO2)=1/2×45
moles of carbon dioxide produced is 22.5moles
Answer:
C
Explanation:
water has the highest specific heat capacity of any liquid,as a hydrogen bond
Answer:
31395 J
Explanation:
Given data:
mass of water = 150 g
Initial temperature = 25 °C
Final temperature = 75 °C
Energy absorbed = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 75 °C - 25 °C
ΔT = 50 °C
now we will put the values in formula
q = m . c . ΔT
q = 150 g × 4.186 J/g.°C × 50 °C
q = 31395 J
so, 150 g of water need to absorb 31395 J of energy to raise the temperature from 25°C to 75 °C .
Zinc because the only metals that would be able to reduce copper ions in solution would be hydrogen, lead, tin, nickel, iron, zinc, aluminum, Magnesium, sodium, calcium, potassium, and lithium. and according to your answer choices Zinc is the answer.