Answer:

Explanation:
We know that the frequency of the nth harmonic is given by
, where
is the fundamental harmonic. Since we have the values of two consecutive frequencies, we can do:

Which for our values means (we do not need the value of <em>n</em>, that is, which harmonics are the frequencies given):

Now we turn to the formula for the vibration frequency of a string (for the fundamental harmonic):

So the tension is:

Which for our values is:

<span>A. social issues!
Hope this assists you!</span>
Answer:
<em>Infrared telescope and camera</em>
<em></em>
Explanation:
An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.
Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, <em>Infrared images is better used, since they are able to penetrate the surrounding clouds of dust,</em> and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.
300 miles / 6 hours = 50 miles per hour
Answer:
Uncertainty in position of the bullet is 
Explanation:
It is given that,
Mass of the bullet, m = 35 g = 0.035 kg
Velocity of bullet, v = 709 m/s
The uncertainty in momentum is 0.20%. The momentum of the bullet is given by :


Uncertainty in momentum is,


We need to find the uncertainty in position. It can be calculated using Heisenberg uncertainty principal as :




Hence, this is the required solution.