The total pressure is given by:
P = ∑xiPi
P = 1/2 x 81 + 1/2 x 45
P = 63 kPa
Answer:
9.9652g of water
Explanation:
The establishment of the liquid-vapor equilibrium occurs when the vapour of water is equal to vapour pressurem 26.7 mmHg. Using gas law it is possible to know how many moles exert that pressure, thus:
n = PV / RT
Where P is pressure 26,7 mmHg (0.0351atm), V is volume (1.350L), R is gas constant (0.082 atmL/molK) and T is temperature (27°C + 273,15 = 300.15K)
Replacing:
n = 0.0351atm×1.350L / 0.082atmL/molK×300.15K
n = 1.93x10⁻³ moles of water are in gaseous phase. In grams:
1.93x10⁻³ moles × (18.01g / 1mol) = <u><em>0.0348g of water</em></u>
<u><em /></u>
As the initial mass of water was 10g, the mass of water that remains in liquid phase is:
10g - 0.0348g = <em>9.9652g of water</em>
<em />
I hope it helps!
Your answer is probably
Vaporization point
In this order.
protons. 6. carbon atom. different. isotopes. atomic masses. same. chemical reaction. reactions. electrons. neutrons.
Dehydration is removal of water.
In alcohols dehydration is α-β elimination or 1,2 elimination, it means the hydroxyl group will be removed from α-carbon while the hydrogen will be removed from near by carbon.
In case of neopentyl alcohol there is no β hydrogen present on the β carbon [as shown in figure].
The only possible way for it to undergo dehydration is by rearrangement.
The process or mechanism can be understood as:
so the chief product is 2-methylbut-2-ene