Answers a
Explanation
Because it removes all the energy in the form of heat
Answer:
Final concentration of C at the end of the interval of 3s if its initial concentration was 3.0 M, is 3.06 M and if the initial concentration was 3.960 M, the concentration at the end of the interval is 4.02 M
Explanation:
4A + 3B ------> C + 2D
In the 3s interval, the rate of change of the reactant A is given as -0.08 M/s
The amount of A that has reacted at the end of 3 seconds will be
0.08 × 3 = 0.24 M
Assuming the volume of reacting vessel is constant, we can use number of moles and concentration in mol/L interchangeably in the stoichiometric balance.
From the chemical reaction,
4 moles of A gives 1 mole of C
0.24 M of reacted A will form (0.24 × 1)/4 M of C
Amount of C formed at the end of the 3s interval = 0.06 M
If the initial concentration of C was 3 M, the new concentration of C would be (3 + 0.06) = 3.06 M.
If the initial concentration of C was 3.96 M, the new concentration of C would be (3.96 + 0.06) = 4.02 M
In order to determine the increase in boiling point of a solvent due to the presence of a solute, we use the formula:
ΔT = Kb * m * i
Here, Kb is a property of the solvent, so remains constant regardless of the solute. Moreover, because the concentration m has been fixed, this will also not be considered. In order to determine which solute will have the greatest effect, we must check i, the van't Hoff factor.
Simply stated, i is the number of ions that a substance produces when dissolved. Therefore, the solute producing the most ions will be the one causing the greatest change in boiling point temperature.
Answer:
6.022×1023
Here, it has been asked how many eggs are in one mole of eggs. The eggs represent the unit which can be atom, ion or molecule. So by the definition of mole, 6.022×1023number of eggs are present in one mole of eggs.