Answer:
Indeed, the two samples should contain about the same number of gas particles. However, the molar mass of
is larger than that of
(by a factor of about
.) Therefore, the mass of the
sample is significantly larger than that of the
sample.
Explanation:
The
and the
sample here are under the same pressure and temperature, and have the same volume. Indeed, if both gases are ideal, then by Avogadro's Law, the two samples would contain the same number of gas particles (
and
molecules, respectively.) That is:
.
Note that the mass of a gas
is different from the number of gas particles
in it. In particular, if all particles in this gas have a molar mass of
, then:
.
In other words,
.
.
The ratio between the mass of the
and that of the
sample would be:
.
Since
by Avogadro's Law:
.
Look up relative atomic mass data on a modern periodic table:
Therefore:
.
.
Verify whether
:
- Left-hand side:
. - Right-hand side:
.
Note that the mass of the
sample comes with only two significant figures. The two sides of this equations would indeed be equal if both values are rounded to two significant figures.
Hi :)
20 mol NH3 x 6 H2O/4 NH3 = 30 mol H2O
Hope this helped :)
Answer:
carbon dioxide and water
Explanation:
Example: Combustion of Methane (CH₄(g))
CH₄(g) + 2O₂(g) => CO₂(g) + 2H₂O(g)**
____________________
Note: The combustion of any hydrocarbon produces CO₂ & H₂O. That is,
Ethane (C₂H₆) + O₂ => CO₂(g) + H₂O(g)
Propane (C₃H₈) + O₂ => CO₂(g) + H₂O(g)
Butane (C₄H₁₀) + O₂ => CO₂(g) + H₂O(g)
The issue remaining is to balance the reaction equation. For these type equation balance Carbon 1st, then Hydrogen and finish with Oxygen. Balancing in this order leaves Oxygen which can be balanced using fractions. If problem requires lowest whole number ratios of elements, simply multiply entire equation by 2 to get standard equation*
______________________
*Standard Equation is defined as the smallest whole number ratios of elements. The 'standard equation' is significant in that it is assumed to be at STP conditions; i.e., 0⁰C (=273K) & 1.0 Atmosphere pressure.
- Ethane (C₂H₆) + 7/2O₂(g) => 2CO₂(g) + 3H₂O(g)
=> 2C₂H₆ + 7O₂(g) => 4CO₂(g) + 6H₂O(g) <= Standard Form of Rxn
- Propane (C₃H₈) + 5O₂(g) => 3CO₂(g) + 4H₂O(g) <= Standard Form of Rxn (no need to balance with the '2' multiple)
- Butane (C₄H₁₀) + 13/2O₂ => 4CO₂(g) + 5H₂O(g)
=> 2C₃H₈ + 13O₂(g) => 4CO₂(g) + 5H₂O(g) <= Standard Form of Rxn
______________________
**Also, note that water, H₂O(g), is listed as a gas. In some cases it will be listed as a liquid, H₂O(l).
Answer:
In engineering and science the common stand is two places.
For example if you get a calculation of 4.567 round up and give the result of 4.57