Explanation:
Rutherford conducted an experiment in which he took a thin gold particle film on which he passes alpha- particles. He noticed that:
- Most of the alpha particles get through the film and can be detected by the detector.
- Around small portion of the alpha particle deflected at small angles.
- A very very few alpha particle (approximately 1 out of 1 million alpha particles) just retraced their path which means come back from the center.
He concluded that:
<u>Most of the space of the atom is empty and in the center of the atom , there is solid mass which is the cause of the alpha particles to come back. He gave the term nucleus to this solid mass.</u>
Answer:
4) how charged the object creating the field is and the distance between the two charged objects
The Boiling Point of 2-methylpropane is approximately -11.7 °C, while, Boiling Point of <span>2-iodo-2-methylpropane is approximately 100 </span>°C.
As both compounds are Non-polar in nature, So there will be no dipole-dipole interactions between the molecules of said compounds.
The Interactions found in these compounds are London Dispersion Forces.
And among several factors at which London Dispersion Forces depends, one is the size of molecule.
Size of Molecule:
There is direct relation between size of molecule and London Dispersion forces. So, 2-iodo-2-methylpropane containing large atom (i.e. Iodine) experience greater interactions. So, due to greater interactions 2-iodo-2-methylpropane need more energy to separate from its partner molecules, Hence, high temperature is required to boil them.
Answer:
<em>Option A. It was delivered by comets that crashed into Earth's surface.</em>
Explanation:
<em><u>Uranium (U) is a chemical element with atomic number 92.</u></em>
<em />
<em>For many years, a large number of scientists have been studying the abundance and origin of the isotopes of uranium in Earth</em>. <u>According to some theories, the Earth's uranium was produced in one or more supernovae</u> (an explosive brightening of a star), in wich, the main process consists in the rapid capture of neutrons by seed nuclei at great rates. <u>Another theory proposes that uranium is created during the merger of two neutron stars</u> (neutron stars are very dense), because, when such dense bodies come closer together the gravitational force cause them to merge, producing huge amounts of hevy metals like uranium.
<u><em>Many analyses have been made of the uranium in rocks of the Earth. These measurements shows that the abundance of uranium is bigger in the crust and upper mantle of the Earth</em></u>.
So, knowing that Earth's uranium was produced through one of these processes, <u><em>the best answer is option A, the uranium was delivered by comets that crashed into Earth's surface.</em></u>
Have a nice day!