Moles of CO₂ = mass / molecular weight
Moles of CO₂ = 4.4 / (12 + 16 x 2)
Moles of CO₂ = 0.1 mol
Each mole of gas occupies 22.4 L at STP. Therefore,
Moles of NH₃ = 5.6 / 22.4
Moles of NH₃ = 0.25 mol
Answer: If the light ray hits the boundary at an angle which is not perpendicular to or parallel to the surface, then it will change direction and appear to `bend'
Hope This Helps You! :D
Answer:
1) The bubbles will grow, and more may appear.
2)Can A will make a louder and stronger fizz than can B.
Explanation:
When you squeeze the sides of the bottle you increase the pressure pushing on the bubble, making it compress into a smaller space. This decrease in volume causes the bubble to increase in density. When the bubble increases in density, the bubble will grow and more bubbles will appear. Therefore, Changing the pressure (by squeezing the bottle) changes the volume of the bubbles. The number of bubbles doesn't change, just their size increases.
Carbonated drinks tend to lose their fizz at higher temperatures because the loss of carbon dioxide in liquids is increased as temperature is raised. This can be explained by the fact that when carbonated liquids are exposed to high temperatures, the solubility of gases in them is decreased. Hence the solubility of CO2 gas in can A at 32°C is less than the solubility of CO2 in can B at 8°C. Thus can A will tend to make a louder fizz more than can B.
1. sundering
2. talc
3 luster