Answer:
How to convert volts to electron-volts
How to convert electrical voltage in volts (V) to energy in electron-volts (eV).
You can calculate electron-volts from volts and elementary charge or coulombs, but you can't convert volts to electron-volts since volt and electron-volt units represent different quantities.
Volts to eV calculation with elementary charge
The energy E in electron-volts (eV) is equal to the voltage V in volts (V), times the electric charge Q in elementary charge or proton/electron charge (e):
E(eV) = V(V) × Q(e)
The elementary charge is the electric charge of 1 electron with the e symbol.
So
electronvolt = volt × elementary charge
or
eV = V × e
Example
What is the energy in electron-volts that is consumed in an electrical circuit with voltage supply of 20 volts and charge flow of 40 electron charges?
E = 20V × 40e = 800eV
Volts to eV calculation with coulombs
The energy E in electron-volts (eV) is equal to the voltage V in volts (V), times the electrical charge Q in coulombs (C) divided by 1.602176565×10-19:
E(eV) = V(V) × Q(C) / 1.602176565×10-19
So
electronvolt = volt × coulomb / 1.602176565×10-19
or
eV = V × C / 1.602176565×10-19
Example
What is the energy in electron-volts that is consumed in an electrical circuit with voltage supply of 20 volts and charge flow of 2 coulombs?
E = 20V × 2C / 1.602176565×10-19 = 2.4966×1020eV
Explanation:
4.00 moles of sodium has a mass of 91.96 grams.
To find an element's molar mass, you can use its atomic weight.
Answer:
It has 140 neutrons because Mass number= No of protons + no of neutrons
Given :
Energy , E = 330 J .
Initial temperature ,
.
Final temperature ,
.
Mass of benzene , m = 24.6 g .
To Find :
The molar hear capacity of benzene at constant pressure .
Solution :
Molecular mass of benzene , M = 78 g/mol .
Number of moles of benzene :

Energy required is given by :

Hence , this is the required solution .