Answer:
K.E = 0.0075 J
Explanation:
Given data:
Mass of the ball = 1.5 kg
radius, r = 50 cm = 0.5 m
Angular speed, ω = 12 rev/min = (12/60) rev/sec = 0.2 rev/sec
Now,
the kinetic energy is given as:
K.E =
where,
I is the moment of inertia = mr²
on substituting the values, we get
or
K.E = 0.0075 J
Answer:
4v/3
Explanation:
Assume elastic collision by the law of momentum conservation:
where v is the original speed of car 1, v1 is the final speed of car 1 and v2 is final speed of car 2. m1 and m2 are masses of car 1 and car 2, respectively
Substitute
Divide both side by , then multiply by 6 we have
So the final speed of the second car is 4/3 of the first car original speed
Answer:
low
Explanation:
the higher the kinetic energy, the More the vibration of molecules, thus heat is more on the side with highly vibrating molecules
The intense heat in the earth's core that causes molten rock in the mantle layer to move.
The whole definition of frequency is: <em>How often something happens. </em>
Especially referring to something that happens over and over and over and over.
One example is Choice-C: How often the particles of a medium vibrate.
"Frequency" comes from the word "frequent". That means "often", and "frequency" just means "often-ness" ... HOW often the thing happens.
Some other examples:
Frequency of jump-roping . . . maybe 60 per minute .
Frequency of rain . . . maybe 5 per month .
Frequency of an AM radio station . . . maybe 1 million waves per second.
(If it's something <u><em>per second</em></u>, then we call it "Hertz". That's not for the car rental company. It's for Heinrich Hertz, the German Physicist who was the first one to prove that electromagnetic waves exist. He sent radio waves all the way ACROSS HIS LABORATORY and detected them at the other side ( ! ), in 1887.)
Frequency of the wiggles in the sound wave coming out of a trumpet playing the note ' A ' . . . 440 Hertz.
Frequency of sunrise and the Chicago Tribune newspaper . . . 1 per day
Frequency of the cycle of Moon phases and an average human woman's ovulation cycle: 1 per 29.531 days, 1 per ~28 days .