The food chain system would also affect it. If the antelopes don't have the right food or a low supply of it they might not stay in that area.
Answer:
The current of the solenoid is 0.0129 A.
Explanation:
The movement of the electron within the solenoid in a circle is produced by equaling the magnetic force and the centripetal force, as follows:
![e*v \mu_{0}*n*I = \frac{m*v^{2}}{r}](https://tex.z-dn.net/?f=%20e%2Av%20%5Cmu_%7B0%7D%2An%2AI%20%3D%20%5Cfrac%7Bm%2Av%5E%7B2%7D%7D%7Br%7D%20)
![I = \frac{m*v}{e* \mu_{0}*n*r}](https://tex.z-dn.net/?f=%20I%20%3D%20%5Cfrac%7Bm%2Av%7D%7Be%2A%20%5Cmu_%7B0%7D%2An%2Ar%7D%20)
Where:
I: is the current
m: is the electron's mass = 9.1x10⁺³¹ kg
v: is the electron's speed = 3.0x10⁵ m/s
μ₀: is the permeability magnetic = 4πx10⁻⁷ T.m/A
n: is the number of turns per unit length = 35/cm
r: is the radius of the circle = 3.0 cm
e: is the electron's charge = 1.6x10⁻¹⁹ C
Therefore, the current of the solenoid is 0.0129 A.
I hope it helps you!
The correct answer is
C ). A hypothesis includes an explanation for why two variables affect each other, but a law only describes how they affect each other.
Answer:
The answer is false
Explanation:
Though the mostly used SI unit of measurement or the most popular units are the
Length,
Time and
Mass
i.e meter (m), seconds (s), kilogram (kg)
Aside all the above stated units for measurements there are other four basic units which are itemized bellow.
they are
1. Amount of substance - mole (mole)
2. Electric current - ampere (A)
3. Temperature - kelvin (K)
4. Luminous intensity - candela (cd)
In this question, you're determining the time (t) taken for an object to fall from a distance (d).
The equation to represent this is:
Time equals the square root of 2 times the distance divided by the gravitational force of earth.
In equation from it looks like this (there isn't an icon to represent square root so just pretend like there's a square root there):
t = 2d/g (square-rooted)
d = 8,848m and g = 9.8m/s
Now plug in the information we have:
t = 2 x 8,848m/9.8m/s (square-rooted)
The first step is to multiply 2 times 8,848m:
t = 17,696m/9.8m/s (square-rooted)
Now divide 9.8m/s by 17,696m (note that the two m's (meters) cancels out leaving you with only s (seconds):
t = 1805.72s (square-rooted)
Now for the last step, find the square root of the remaining number:
t = 42.5s
So the time it takes the ball to drop from the height (distance) of 8,848 meters, and falling with the gravitational pull of 9.8 meters per second is 42.5 seconds.
I hope this helps :)