1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anika [276]
1 year ago
14

How to determine the direction a parabola opens

Mathematics
1 answer:
kozerog [31]1 year ago
5 0

Answer:

Upward or Downward

Step-by-step explanation:

A parabola is the graph of a quadratic function y = ax2 + bx + c. The graphs below depict two typical parabolas:

For clarity, we indicate their x-intercepts with red dots, their y-intercepts with pink dots, and the vertex of each parabola with a green dot:

The first parabola (a U shape) opens vertically, whereas the second parabola opens downwards (is an upside down U shape).

Given the function y = ax2 + bx + c, write the following:

  • <em>If an is greater than zero (positive), the parabola widens upward.</em>
  • <em>If the value is 0 (negative), the parabola expands downward.</em>

You might be interested in
My mom packed my lunch three of the past five days, so the probability of my mom packing my lunch is 3/5. Is this Experimental o
Crank

Answer:

definitely theoretical.  Seems how mom packed the lunch 3/5 times a week, the pattern will follow

Step-by-step explanation:

4 0
3 years ago
Which table represents a linear function that has a slope of 5 and a y-intercept of 20?
erastovalidia [21]

Answer:

The first image.

x |  y

-4 | 0

0 | 20  <--- When x = 0, the y value is the y-intercept.

4 | 40

8 | 60

Step-by-step explanation:

To check the slope, we can use the equation (y₂ - y₁) ÷ (x₂ - x₁) using any two pairs given. For this example, I'll use (-4, 0) and (4, 40).

                                                              x₂  y₂         x₁   y₁

(0 - 40) ÷ (-4 - 4)

(-40) ÷ (-8)

<u>Slope = 5</u>

<u></u>

~Hope this helps!~

8 0
3 years ago
Read 2 more answers
Please help me with this problem, and can you also show steps. thank you
Maurinko [17]
Convert all the improper fractions into mixed numbers, then simplify. Then, you do the operations.
7 0
3 years ago
Read 2 more answers
Find the value of x. WILL GIVE BRAINLIEST!!!
Readme [11.4K]

Answer: x = 16

Step-by-step explanation:

24 + 2 + 4x = 90

26 + 4x = 90

4x = 64

x = 16

6 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
Other questions:
  • Someone please help me with this question!!! Thank you
    8·1 answer
  • On Monday Erin measured 3/4 inches of snowfall. It snowed some more at the end of the day. Now there are 3 1/4 inches of snow. H
    8·1 answer
  • Can two fractions with the same numerator and different denominators can be equal.
    13·1 answer
  • Can I get help with this? thanks.
    13·1 answer
  • A (0, 2), B (–2, 6), and C (4, 0). Find the coordinates of the orthocenter
    14·1 answer
  • Does 36,84,91 make a right triangle?
    12·2 answers
  • How to represent 7/3 on number line​
    8·1 answer
  • Plz help with math homework
    11·2 answers
  • Solve the inequality as shown in the picture
    5·1 answer
  • The graph of y=⅔ x - 12 intersects the y-axis at Q (0, -12) and is perpendicular to a line joining Q to the point P ( x , 0). Fi
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!