Hello :
let : z = 4-3ii z' = -2+7i
the distance between the points 4-3i and -2+7i is : <span>|z - z' |
</span> |z - z' | = |4-3i+2-7i| = |6-10i | =√(6²+(-10)²) =√136
Answer:
21,337.85 8,589 e
takethe 6,139 6,139 nawa og 8,589
Toy 1.40495_ear to 02 Yang es 2.48432 e
es Inc4oua5 Ince r 2 incz484323 lnceo.at
Step-by-step explanation:
Answer:
+3.8 to each side
Step-by-step explanation:
Answer:
2x³ + 12x² + 10x - 24
Step-by-step explanation:
(2x² + 6x - 8)(x + 3) Distribute
2x³ + 6x² + 6x² + 18x - 8x - 24 Combine like terms
2x³ + 12x² + 10x - 24 This expression is in standard form
If this answer is correct, please make me Brainliest!
Integrate the force field along the given path (call it <em>C</em>):


