The scientific evidence that scientists use in supporting or critiquing the conclusions of experiments usually consists observations based on large sample sizes.
The oxidation state of the elements in the compounds are:
CoH₂:
FeBr₃:
<h3>What is the oxidation states of the elements in the given compounds?</h3>
The oxidation states of the elements in each of the given compounds is determined as follows:
Cobalt dihydride, CoH₂
Co = +2
H = -1
Iron (iii) bromide, FeBr₃
Fe = +3
Br = -1
In conclusion, the oxidation state of the elements are charges they have in the compound.
Learn more about oxidation state at: brainly.com/question/27239694
#SPJ1
Moles of H₂ are needed to produce 9.33 moles of NH₃ : 13.995
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
The reaction coefficient in a chemical equation shows the mole ratio of the reactants and products
Reaction for the synthesis of ammonia :
N₂+3H₂⇒2NH₃
moles of NH₃ = 9.33
From equation, mol ratio of H₂ : NH₃ = 3 : 2, so mol H₂ :

Answer:
4 M
Explanation:
Molarity can be represented by the following ratio:
Molarity = moles / volume (L)
Since you have been given both the mass and volume, you can plug the values into the equation and solve for molarity.
Molarity = moles / volumes
Molarity = 2.0 moles / 0.50 L
Molarity = 4 M