Answer:
Actually, one of the more interesting organisms at those depths is the Xenophyophore, a creature which, despite being single-celled, can grow to be over 10 centimeters wide. "Scientists say xenophyophores are the largest individual cells in existence.
Explanation:
The answer for this question is 0.8
Answer:
91.16% has decayed & 8.84% remains
Explanation:
A = A₀e⁻ᵏᵗ => ln(A/A₀) = ln(e⁻ᵏᵗ) => lnA - lnA₀ = -kt => lnA = lnA₀ - kt
Rate Constant (k) = 0.693/half-life = 0.693/10³yrs = 6.93 x 10ˉ⁴yrsˉ¹
Time (t) = 1000yrs
A = fraction of nuclide remaining after 1000yrs
A₀ = original amount of nuclide = 1.00 (= 100%)
lnA = lnA₀ - kt
lnA = ln(1) – (6.93 x 10ˉ⁴yrsˉ¹)(3500yrs) = -2.426
A = eˉ²∙⁴²⁶ = 0.0884 = fraction of nuclide remaining after 3500 years
Amount of nuclide decayed = 1 – 0.0884 = 0.9116 or 91.16% has decayed.
1 mole K ------------- 6.02x10²³ atoms
1.83 moles K ------ ?? atoms
1.83 x (6.02x10²³) / 1 =
1.101x10²⁴ atoms of K
hope this helps!
The 2 represents that it is a double carbon bond
it looks like..
C-C = C-C