Answer:
the voltage across each resistor is one third of the battery voltage
Explanation:
In a series circuit, the current is constant throughout the circuit, so the battery voltage is equal to the sum of the voltage drop in each part of the series circuit.
V = i (R₁ + R₂ + R₃)
in the exercise indicate that all resistance has the same value
R₀ = R₁ = R₂ = R₃
V = i 3 R₀
V
= 3 V₀
V₀ = i R₀
V₀= V / 3
the voltage across each resistor is one third of the battery voltage
Snell's law is defined as “The ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant, for the light of a given colour and for the given pair of media”.
Answer:
(a) 83475 MW
(b) 85.8 %
Explanation:
Output power = 716 MW = 716 x 10^6 W
Amount of water flows, V = 1.35 x 10^8 L = 1.35 x 10^8 x 10^-3 m^3
mass of water, m = Volume x density = 1.35 x 10^8 x 10^-3 x 1000
= 1.35 x 10^8 kg
Time, t = 1 hr = 3600 second
T1 = 25.4° C, T2 = 30.7° C
Specific heat of water, c = 4200 J/kg°C
(a) Total energy, Q = m x c x ΔT
Q = 1.35 x 10^8 x 4200 x (30.7 - 25.4) = 3 x 10^12 J
Power = Energy / time
Power input =
Power input = 83475 MW
(b) The efficiency of the plant is defined as the ratio of output power to the input power.


Thus, the efficiency is 85.8 %.
Answer:
Total momentum = 50kgm/s
Explanation:
<u>Given the following data;</u>
Mass, M1 = 5kg
Mass, M2 = 7kg
Velocity, V1 = 10m/s
Velocity, V2 = 0m/s (since it's at rest).
To find the total momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
The law of conservation of momentum states that the total linear momentum of any closed system would always remain constant with respect to time.
Total momentum = M1V1 + M2V2
Substituting into the equation, we have;
Total momentum = 5*10 + 7*0
Total momentum = 50 + 0
<em>Total momentum = 50 kgm/s</em>
<em>Therefore, the total momentum of the bowling ball and the putty after they collide is 50 kgm/s. </em>
Answer:
C. wavelength = speed/frequency
Explanation: I got it right