Answer:
plus and minus
Step-by-step explanation:
example : 3 ± 5 = 8 or -2
The area = L*L=9 or 3*3=9
Which means that each sides length equals 3 if it is a perfect square.
Answer:
50 pounds
Step-by-step explanation:
Dan and june mix two kind of feed for pedigreed dogs
Feed A worth is $0.26 per pound
Feed B worth is $0.40 per pound
Let x represent the cheaper amount of feed and y the costlier type of feed
x+y= 70..........equation 1
0.26x + 0.40y= 0.30×70
0.26x + 0.40y= 21.........equation 2
From equation 1
x + y= 70
x= 70-y
Substitutes 70-y for x in equation 2
0.26(70-y) + 0.40y= 21
18.2-0.26y+0.40y= 21
18.2+0.14y= 21
0.14y= 21-18.2
0.14y= 2.8
Divide both sides by the coefficient of y which is 0.14
0.14y/0.14= 2.8/0.14
y= 20
Substitute 20 for y in equation 1
x + y= 70
x + 20= 70
x= 70-20
x = 50
Hence Dan and june should use 50 pounds of the cheaper kind in the mix
The smallest value is $0.25 (a quarter) because you can use two quarters and a half dollar. Only one of them can't be a half dollar, but the other two can be.
Answer:
Rs 328
Step-by-step explanation:
Find the <u>principal</u> amount invested.
<u>Simple Interest Formula</u>
I = Prt
where:
- I = interest earned
- P = principal
- r = interest rate (in decimal form)
- t = time (in years)
Given:
- I = Rs 320
- r = 5% = 0.05
- t = 2 years
Substitute the given values into the formula and solve for P:
⇒ 320 = P(0.05)(2)
⇒ 320 = P(0.1)
⇒ P = 3200
<u>Compound Interest Formula</u>

where:
- I = interest earned
- P = principal amount
- r = interest rate (in decimal form)
- n = number of times interest applied per time period
- t = number of time periods elapsed
Given:
- P = 3200
- r = 5% = 0.05
- n = 1 (annually)
- t = 2 years
Substitute the given values into the formula and solve for I:





Therefore, the compound interest on the same sum for the same time at the same rate is Rs 328.