False as oxygen is the second most abundant and nitrogen is the most abundant at 78%.
a. 0.5 T
- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position
- The period T is the time the system takes to complete one oscillation
During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.
So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion

and solving for t we find

b. 1.25T
Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that
- the mass takes a time of 1 T to cover a distance of 4A
we can set the following proportion:

And by solving for t, we find

Answer:
Correct answer is option D
- Wire is on the cylinder axis and carries current i in the direction opposite to that of the current in the shell
Explanation:
- It cannot be Option E, because the magnetic field outside the wire would not be 0 due to the current carried by the conductor
-Also, the parallel wire cannot carry current in the same direction because, that would amplify the magnetic field created by the outer cylinder (since B is dir. proportional to the current) -and now, that leaves only option C and D. If, it is Option C, then that means one side of the cylinder would be more closer to the parallel wire than the other, so there would be different B fields on the two opposite sides of the cylinder. So, that means the answer is option D.
Answer: It opposes the flow of electrons.
Explanation: just did the quiz on
Answer:
The film thickness is 4.32 * 10^-6 m
Explanation:
Here in this question, we are interested in calculating the thickness of the film.
Mathematically;
The number of fringes shifted when we insert a film of refractive index n and thickness L in the Michelson Interferometer is given as;
ΔN = (2L/λ) (n-1)
where λ is the wavelength of the light used
Let’s make L the subject of the formula
(λ * ΔN)/2(n-1) = L
From the question ΔN = 8 , λ = 540 nm, n = 1.5
Plugging these values, we have
L = ((540 * 10^-9 * 8)/2(1.5-1) = (4320 * 10^-9)/1 = 4.32 * 10^-6 m