The <span>biogenous sediment contains the remains of dead organisms such as shells and skeletons.</span>
Answer:
Explanation:
We shall apply work energy theorem to calculate the initial velocity just after the collision .
Their kinetic energy will be equal to work done by friction .
force of friction = μ mg , where μ is coefficient of friction , m is total mass and g is acceleration due to gravity
force = .463 x 3210 x 9.8
= 14565.05 N
work done = force x displacement
= 14565.05 x 14.54 = 211775.88 J
now applying work energy theorem
1/2 m v² = 211775.88 , m is composite mass , v is velocity just after the collision
.5 x 3210 x v² = 211775.88
v² = 131.94
v 11.48 m /s
C. The forces on an object traveling at terminal velocity are balanced.
16, 5 , 3 = 16+5+3= 24 + 3
So at the end put 24 + 3 cm
And put 16 for the lengths
For the value 5 and for the diving thingy 3
At 1.70 atm, a gas sample occupies 4.25 liters. If the pressure in the gas increases to 2.40 atm, what will the new volume be?
Answer:
3.01L
Explanation:
Given parameters:
Initial pressure, P1 = 1.7atm
Initial volume, V1 = 4.25L
Final pressure, P2 = 2.4atm
Unknown:
Final or new volume, V2 = ?
Solution:
To solve this problem, we use Boyle's law which states that "the volume of a fixed mass of a gas varies inversely as the pressure changes, if the temperature is constant".
P1 V1 = P2 V2
P1 is the initial pressure
V1 is the initial volume
P2 final pressure
V2 final volume
1.7 x 4.25 = 2.4 x V2
V2 = 3.01L