Answer: The conclusion that best support the observation is that (A CHEMICAL CHANGE took place).
Explanation:
A chemical reaction is defined as the process by which two or more substances, which are often referred to as REACTANTS, combine through bond formation or dissociation of bonds to form new PRODUCTS. In this type of reaction, a CHEMICAL CHANGE occurred because a new substance is formed as a result of the chemical reaction that took place.
There are different characteristics of a reaction which shows that a chemical change has occurred, these includes:
--> Color Change
--> Production of an odor
--> Change of Temperature
--> Evolution of a gas (formation of bubbles)
-- Precipitate (formation of a solid)
From the chemical reaction in the given question, Lithium metals reacts slowly with water to form a colourless solution of lithium hydroxide (LiOH) and hydrogen gas (H2). Here we observe that the buzzing sound of formed gas bubbles shows that a gas was given off. Therefore in conclusion, a CHEMICAL CHANGE took place.
Answer:
2 mol H
Explanation:
For every 2 mol of NaOH, we're reacting 2 mol of H2O. In order to figure out how many mol of H are needed, it needs to be set up stochiometrically. Starting off with the given value, 1 mol of NaOH, we can then make a mol to mol ratio. For 2 mol of NaOH, we have 2 mol of H2O. For every 2 mol of H2O, we have 4 mol of H (this is because we are multiplying the coefficient by the subscript: 2 × 2). Now, we can solve for our answer.
1 mol NaOH × (2 mol H₂O / 2 mol NaOH) × (4 mol H / 2 mol H₂O)
= 2 mol H
Thus, we get 2 mol of H are needed to completely react 1 mol of NaOH.
Answer:
1) The rate of the overall reaction = Δ[N₂O]/Δt = 0.015 mol/L.s.
2) The rate of change for NO = - Δ[NO]/Δt = 3 Δ[N₂O]/Δt = 0.045 mol/L.s.
Explanation:
<em>3NO(g) → N₂O(g) + NO₂(g).</em>
The rate of the reaction = -1/3 Δ[NO]/Δt = Δ[N₂O]/Δt = Δ[NO₂]/Δt.
Given that: Δ[N₂O]/Δt = 0.015 mol/L.s.
<em>1) The rate of the overall reaction is?</em>
The rate of the overall reaction = Δ[N₂O]/Δt = 0.015 mol/L.s.
<em>2) The rate of change for NO is?</em>
The rate of change for NO = - Δ[NO]/Δt.
∵ -1/3 Δ[NO]/Δt = Δ[N₂O]/Δt.
<em>∴ The rate of change for NO = - Δ[NO]/Δt = 3 Δ[N₂O]/Δt </em>= 3(0.015 mol/L.s) = <em>0.045 mol/L.s.</em>
It allowed him to realize that the mass of an atom is concentrated at its center because the atoms mostly went through the foil but some were deflected. He also realized that an atom probably wasn't just empty space and scattered electron and it had a positive center.
Answer:
There are two types of mixtures: heterogeneous and homogeneous. Heterogeneous mixtures have visually distinguishable components, while homogeneous mixtures appear uniform throughout. The most common type of homogenous mixture is a solution, which can be a solid, liquid, or gas.
Hope this helped :)