Answer:
The answer to the question is 0.0122 m/s
Explanation:
The rate of a reaction is the measure of the change in concentration of a reagent within a specific time frame. Reaction rate of a substance can be calculated by finding the division of the concentration change of the substance and the time required to undergo the change in concentration.
The initial number of moles of X = 0.732 moles and final number of moles of X = 0 moles and the time it took to effect the change = 60s
then the rate of reaction =
= 0. 0122 moles per second
the rate of the reaction involving X = 0.0122 m/s
Copy it I think hp[e that is right lol
Answer:
The final volume in mL is 7.14 mL or 7.1 mL.
Explanation:
1.Use Boyle's Law(
). Re-arrange to solve for
<em> for the final volume.</em>
<em />
<em>2. Plug in values. </em>
The stable ion the sulfur would form is the sulfide ion,
S
2
−
.
Explanation:
A neutral sulfur atom contains 16 electrons. We can know this because its atomic number is 16, which means there are 16 protons in the nucleus. Since the negative charge of the electrons cancels the charge of the protons, the sulfur atom is neutral. The electron configuration of sulfur is
1s
2
2s
2
2p
6
3s
2
3p
4
. The valence shell (the 3s and 3p sublevels) contains six electrons, but it needs eight to become stable. Think of the octet rule. Therefore a sulfur atom will gain two electrons to form the sulfide anion with a charge of
2
−
, with the symbol
S
2
−
.hope this helps
Answer:
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓
Ksp = [2s]² . [s] → 4s³
Explanation:
Ag₂CrO₄ → 2Ag⁺ + CrO₄⁻²
Chromate silver is a ionic salt that can be dissociated. When we have a mixture of both ions, we can produce the salt which is a precipitated.
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓ Ksp
That's the expression for the precipitation equilibrium.
To determine the solubility product expression, we work with the Ksp
Ag₂CrO₄ (s) ⇄ 2Ag⁺ (aq) + CrO₄⁻² (aq) Ksp
2 s s
Look the stoichiometry is 1:2, between the salt and the silver.
Ksp = [2s]² . [s] → 4s³