The molarity of the solution of H₃PO₄ needed to neutralize the KOH solution is 0.35 M
<h3>Balanced equation </h3>
H₃PO₄ + 3KOH —> K₃PO₄ + 3H₂O
From the balanced equation above,
- The mole ratio of the acid, H₃PO₄ (nA) = 1
- The mole ratio of the base, KOH (nB) = 3
<h3>How to determine the molarity of H₃PO₄ </h3>
- Volume of acid, H₃PO₄ (Va) = 10.2 mL
- Molarity of base, Ca(OH)₂ (Mb) = 0.2 M
- Volume of base, Ca(OH)₂ (Vb) = 53.5 mL
- Molarity of acid, H₃PO₄ (Ma) =?
MaVa / MbVb = nA / nB
(Ma × 10.2) / (0.2 × 53.5) = 1 / 3
(Ma × 10.2) / 10.7 = 1 / 3
Cross multiply
Ma × 10.2 × 3 = 10.7
Ma × 30.6 = 10.7
Divide both side by 30.6
Ma = 10.7 / 30.6
Ma = 0.35 M
Learn more about titration:
brainly.com/question/14356286
#SPJ1
Answer:
Q = 2.60 •
J
Explanation:
Our specific heat capacity equation is:
Q = mC∆T
Q is the energy in joules.
m is the mass of the substance.
∆T is the temperature chance.
Let's plug in what we know.
- We have 76.0 g of octane
- The specific heat capacity of octane is 2.22 J/(g•K)
- The temperature increases from 10.6º to 26.0º (a 15.4º increase)
Q = 76.0(2.22)(15.4)
Multiply.
Q = 2598.288
We want three significant figures.
Q = 2.60 • 
or
Q = 2590 J
Hope this helps!
Answer: The general formulae for moles is n=m/mr so now we have being given to find the mass so all we have to do is to change subject
Explanation: so we have to change subject in this question to m= n× mr . so in the question below we have being given the mole as 1.5mol/dm³ so all we have to do is to find the molecular relative mass(mr) .
to find the molecular relative mass of sodium hydroxide (NAOH) we add all of the atomic masses of all the atoms present so here we have sodium oxygen and hydrogen atoms present.
NA=23 O=16 H=1 so we add 23+16+1=40 so 40 is our molecular relative mass
now we fix it in our formulae which is m=n× mr
m=1.5× 40 =60 so our mass is 60grams or 60g
HOPE THIS HELPS!!!! if i made a mistake our MAY answer may be wrong feel free to comment
The coefficients should be 1; 6; 4; 4 and the coefficient of CO2 is 4