Answer:
Option A
Explanation:
Please find the attachment
Castor oil is increasingly becoming an important bio-based raw material for industrial applications. The oil is non-edible and can be extracted from castor seeds from the castor plant belonging to the family Euphorbiaceae. The oil is a mixture of saturated and unsaturated fatty acid esters linked to a glycerol. The presence of hydroxyl group, a double bond, carboxylic group and a long chain hydrocarbon in ricinoleic acid (a major component of the oil), offer several possibilities of transforming it into variety of materials. The oil is thus a potential alternative to petroleum-based starting chemicals for the production of materials with variety of properties. Despite this huge potential, very little has recently been reviewed on the use of castor oil as a bio-resource in the production of functional materials. This review therefore highlights the potential of castor oil in the production of these diverse materials with their projected global market potential. The review gives the background information of castor oil and its geographical availability, the properties and its uses as bio-based resource for synthesis of various materials. The review further highlights on the use of castor oil or ricinoleic acid as a green capping agent in the synthesis of nanomaterials.

Answer: Viscous flow formation of ceramics
Explanation:
Vitrification is the transformation of a substance into a glass,or in other wods, non-crystalline amorphous solid. In the production of ceramics, vitrification is responsible for its impermeability to water.
Vitrification is usually achieved by heating materials until they liquidize, then cooling the liquid, often rapidly, so that it passes through the glass transition to form a vitrified solid. Certain chemical reactions also result in glasses.
The most common applications are in the making of pottery, glass, and some types of food, but there are many others, such as the vitrification of an antifreeze-like liquid in cryopreservation.
Answer:
Yasssssssssssssssssssssssss
Answer:
The correct answers are:
a. % w = 33.3%
b. mass of water = 45g
Explanation:
First, let us define the parameters in the question:
void ratio e =
= 
Specific gravity
=

% Saturation S =
×
=
× 
water content w =
=
a) To calculate the lower and upper limits of water content:
when S = 100%, it means that the soil is fully saturated and this will give the upper limit of water content.
when S < 100%, the soil is partially saturated, and this will give the lower limit of water content.
Note; S = 0% means that the soil is perfectly dry. Hence, when s = 1 will give the lowest limit of water content.
To get the relationship between water content and saturation, we will manipulate the equations above;
w = 
Recall; mass = Density × volume
w = 
From eqn. (2)
= 
∴ 
putting eqn. (6) into (5)
w = 
Again, from eqn (1)

substituting into eqn. (7)

∴ 
With eqn. (7), we can calculate
upper limit of water content
when S = 100% = 1
Given, 
∴
∴ %w = 33.3%
Lower limit of water content
when S = 1% = 0.01

∴ % w = 0.33%
b) Calculating mass of water in 100 cm³ sample of soil (
)
Given,
, S = 50% = 0.5
%S =
×
=
× 
0.50 = 
mass of water = 