Solution:
Given:
pressure ratio,
= 6.75
Formula used:

(1)
where,
= pressure ratio
γ = specific heat ratio of a gas( here, helium gas it is 1.667)
Now,
Eqn (1 ) is for thermal efficiency of an ideal gas, using eqn (1), we get
\eta = 1- \frac{1}{2.1469} = 0.5342
percentage thermal efficiency, \eta =53.42%
Answer:
Un multímetro analógico funciona como un medidor de bobina móvil de imán permanente (PMMC) para tomar mediciones eléctricas
Explanation:
El multímetro analógico es un medidor o galvanómetro D'Arsonval que funciona según el principio de los medidores de bobina móvil de imán permanente (PMMC)
Un multímetro analógico está formado por un puntero de aguja unido a una bobina móvil colocada entre el polo norte y sur de un imán permanente dispuesto de tal manera que, cuando una corriente eléctrica fluye a través de la bobina, genera una fuerza de campo magnético que interactúa con el imán fuerza de campo de los imanes permanentes que hace que la bobina se mueva junto con el puntero de la aguja sobre un dial graduado
Para controlar el movimiento del puntero de la aguja, de modo que el par requerido para producir una cantidad de movimiento por corriente detectada por el multímetro, se colocan dos resortes a través de la bobina para proporcionar resistencia al movimiento en ambas direcciones y para permitir la calibración del multímetro analógico.
Answer:
1028.1184 Ohms
Explanation:
<u>Given the following data;</u>
- Initial resistance, Ro = 976 Ohms
- Initial temperature, T1 = 0°C
- Final temperature, T2 = 89°C
Assuming the temperature coefficient of resistance for carbon at 0°C is equal to 0.0006 per degree Celsius.
To find determine its new resistance, we would use the mathematical expression for linear resistivity;

Substituting into the equation, we have;




The question is incomplete. The complete question is :
The solid rod shown is fixed to a wall, and a torque T = 85N?m is applied to the end of the rod. The diameter of the rod is 46mm .
When the rod is circular, radial lines remain straight and sections perpendicular to the axis do not warp. In this case, the strains vary linearly along radial lines. Within the proportional limit, the stress also varies linearly along radial lines. If point A is located 12 mm from the center of the rod, what is the magnitude of the shear stress at that point?
Solution :
Given data :
Diameter of the rod : 46 mm
Torque, T = 85 Nm
The polar moment of inertia of the shaft is given by :


J = 207.6 
So the shear stress at point A is :



Therefore, the magnitude of the shear stress at point A is 4913.29 MPa.
Answer:
0.5m^2/Vs and 0.14m^2/Vs
Explanation:
To calculate the mobility of electron and mobility of hole for gallium antimonide we have,
(S)
Where
e= charge of electron
n= number of electrons
p= number of holes
mobility of electron
mobility of holes
electrical conductivity
Making the substitution in (S)
Mobility of electron


Mobility of hole in (S)


Then, solving the equation:
(1)
(2)
We have,
Mobility of electron 
Mobility of hole is 