A light year is a distance.
It's the distance that light travels in a year, through vacuum.
The distance is about 5.875 trillion miles.
The nearest star outside our solar system is about 4.2 light years from us.
Sorry to have rambled on for so long.
Answer:
increases by a factor of 
Explanation:
First we need to find the initial velocity for it to stop at the distance 2d using the following equation of motion:

where v = 0 m/s is the final velocity of the package when it stops,
is the initial velocity of the package when it, a is the deceleration, and
is the distance traveled.
So the equation above can be simplified and plug in Δs = d,
for the 1st case
(1)
For the 2nd scenario where the ramp is changed and distance becomes 2d, 
(2)
let equation (2) divided by (1) we have:



So the initial speed increases by
. If the deceleration a stays the same and time is the ratio of speed over acceleration a

The time would increase by a factor of 
Answer:
Aristotle was blind, therefore could not see change in positions. Aristotle could see no detectable change in the positions of the stars, thought Earth was immovable.
Explanation:
Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a giant planet with a mass one-thousandth that of the Sun, but two and a half times that of all the other planets in the Solar System combined.
I would say B because it is near the ocean which can cause a tsunami but also because of the wind coming from the ocean (it might cause hurricanes and lots of storms) I’m not sure though but that’s what I think makes sense. Good Luck!