1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MissTica
4 years ago
10

How much is 1.75 inches in cm?

Physics
2 answers:
soldi70 [24.7K]4 years ago
5 0

1 inch = 2.54 cm

(1.75) x (1 inch) = (1.75) x (2.54 cm)

That's <em>4.45 cm</em> .

saul85 [17]4 years ago
3 0

Answer:

4.44 cm

Explanation:

:)

You might be interested in
The following data were collected during a short race between two friends. Velocity (m/s) 0 0.5 1 1.5 2 2 4 6 2 0 Time (s) 0 2 4
scoundrel [369]

The characteristics of the kinematics allow to find the results for the questions about the movement of the body are:

a)  we have four sections;

  • 0 to 8 s The body is accelerating.
  • 8 to 10 s The body goes at a constant speed, the acceleration is zero.
  • 10 to 14 Body accelerating.
  • 14 to 18 Body slowing down.

b)  The acceleration is the first 8 s is:  a = 0.25 m / s²

c) The maximum acceleration is:    a = 1 m / s²

d) The displacement   is:  i) d₁ =  8m,     ii)  d_{total}= 16 m

e) maximum speed  is:      v = 6 m / s

Kinematics studies the movement of bodies by finding relationships between the position, speed and acceleration of bodies.

        v = v₀ + a t

        y = v₀ t + ½ a t²

where v and v₀ is the current and initial velocity, respectively, a is the acceleration and t is time.

In many circumstances graphs are made for their analysis, in a graph of speed versus time when we have a horizontal line the speed is constant, the acceleration is zero and in the case of a slope there is an acceleration, we have two cases:

  • Positive slope the body is accelerating and the speed is increasing.
  • Negative slope the body is stopping, the speed decreases.

Let's answer the different questions about the system.

a) in the attached we have a graph of the velocity versus time, each section corresponds to a change in the slope of the graph, we have four sections;

  • 0 to 8 s The body is accelerating.
  • 8 to 10 s The body goes at a constant speed, the acceleration is zero.
  • 10 to 14 Body accelerating.
  • 14 to 18 Body slowing down.

b) The acceleration is the first 8 s

          v = v₀ + a t

          a = \frac{v-v_o}{\Delta t}  

          a = \frac{2-0}{8-0}  

          a = 0.25 m / s²

c) The maximum acceleration is when the slope is maximum.

          a = \frac{6-2}{ 14-10}  

          a = 1 m / s²

Therefore the acceleration is maximum in the section between 10 and 14 s

d) The total displacement is the sum of the displacements of each section.

         d_{total } = d_1 +d_2 + d_3 +d_4  

We look for every displacement.

       d₁ = v₀ + ½ a₁ Δt²

       d₁ = 0 + ½ 0.25 8²

       d₁ = 8 m

In the second section the velocity is constant

         d₂ = v₂ Δt₂

         d₂ = 2 (10-8)

         d₂ = 4 m

The third section.

    d₃ = v₀ + ½ a t²

    d₃ = 2 + ½ 1 (14-10) ²

    d₃ = 10 m

The distance of the fourth section.

       

we look for acceleration

          a₄ = \frac{v-v_o}{\Delta t}  

          a₄ = \frac{0-6}{18-14}  

          a₄ = -1.5 m / s²

     

          d₄ = 6 + ½ (-1.5) (1814) ²

          d₄ = -6 m

The total displacement is;

          d_{total} = 8 + 4 + 10 -6

          d_{total} = 16 m

e) The maximum speed is the highest point in the graph of speed versus time that in the attachment we can see corresponds to

          v = 6 m / s

In conclusion using the characteristics of kinematics we can find the results for the questions about the motion of bodies are:

  a)  we have four sections;

  • 0 to 8 s The body is accelerating.
  • 8 to 10 s The body goes at a constant speed, the acceleration is zero.
  • 10 to 14 Body accelerating.
  • 14 to 18 Body slowing down.

b)  The acceleration is the first 8 s is:  a = 0.25 m / s²

c) The maximum acceleration is:    a = 1 m / s²

d) The displacement   is:  i) d₁ =  8m,     ii)  d_{total}= 16 m

e) maximum speed  is:      v = 6 m / s

Learn more about kinematics here: brainly.com/question/24783036

3 0
2 years ago
The lubrication of bone joints is a subject of ongoing medical research. Two bones connected at a joint do not touch. The bones
maks197457 [2]

The question is incomplete. The complete question is :

To measure the effective coefficient of friction in a bone joint, a healthy joint (and its immediate surroundings) can be removed from a fresh cadaver. The joint is inverted, and a weight is used to apply a downward force F⃗ d on the head of the femur into the hip socket. Then, a horizontal force F⃗ h is applied and increased in magnitude until the femur head rotates clockwise in the socket. The joint is mounted in such a way that F⃗ h will cause clockwise rotation, not straight-line motion to the right. The friction force will point in a direction to oppose this rotation.

Draw vectors indicating the normal force n⃗  (magnitude and direction) and the frictional force f⃗ f (direction only) acting on the femur head at point A.

Assume that the weight of the femur is negligible compared to the applied downward force.

Draw the vectors starting at the black dot. The location, orientation and relative length of the vectors will be graded

Solution :

The normal force represented by N is equal to the downward force, $F_d$ which is equal in magnitude but it is opposite in direction.

Also the frictional force acts always to oppose the motion because the bone starts moving in a clockwise direction. The frictional force that will be applied to the right direction so that the movement or the rotation at A is opposed.  

5 0
3 years ago
O que é cena fone de luz na visão da fisica
yulyashka [42]
Me don’t speak spanish
4 0
3 years ago
Lab: Thermal Energy Transfer What is the purpose of the lab, the importance of the topic, and the question you are trying to ans
VladimirAG [237]

Answer:

it's important because it shows how thermal energy transforms or continues to be all around us in everything

6 0
3 years ago
A cart traveling at 0.3 m/s collides with stationary object. After the collision, the cart rebounds in the opposite direction. T
Nady [450]
The first collision because a greater amount of momentum must be taken and used in order to push the cart back, giving it a greater mass and impulse
6 0
3 years ago
Other questions:
  • The capacity of a storage battery, such as those used in automobile electrical systems, is rated in ampere-hours (A⋅h). A 50 A⋅h
    15·1 answer
  • Relate 1 k w h and unit of energy
    9·1 answer
  • A rigid vessel of 0.06 m3 volume contains an ideal gas , CV =2.5R, at 500K and 1 bar.a). if 15000J heat is transferred to the ga
    14·1 answer
  • Part of the solar radiation entering the atmosphere about ___ actually reaches the earth's surface
    6·1 answer
  • A cart of mass 6.0 kg moves with a speed of 3.0 m/s towards a second stationary cart with a mass of 3.0 kg. The carts move on a
    6·1 answer
  • Why would the time of flight depend on the angle of the launch
    10·1 answer
  • Describe the general structure of an atom.
    5·2 answers
  • Which of the following elements is in Group 2?
    8·1 answer
  • Why do we break up angled forces into components? How does that help us solve force problems?
    14·1 answer
  • What is the relationship between friction and velocity?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!