Answer:
The speed is constant.
Explanation:
The equation for a straight-line graph is
<em>y</em> = m<em>x</em> + b
where m and b are constants.
m is the <em>slope</em> of the line and b is the <em>y-intercept.
</em>
If we change the variables, the equation becomes
<em>d</em> = m<em>t</em> + b

Since m is constant, so is the speed.
Answer:
104.969 amu.
Explanation:
From the question given above, the following data were obtained:
Isotope A:
Mass of A = 107.977 amu
Abundance (A%) = 0.1620%
Isotope B:
Mass of B = 106.976 amu
Abundance (B%) = 1.568%
Isotope C:
Mass of C = 105.974 amu
Abundance (C%) = 47.14%
Isotope D:
Mass of D = 103.973 amu
Abundance (D%) = 51.13%
Average atomic mass =?
The average atomic mass of the element can be obtained as follow:
Average atomic mass = [(Mass of A × A%) /100] + [(Mass of B × B%) /100] + [(Mass of C × C%) /100] + [(Mass of D × D%) /100]
Average atomic mass = [(107.977 × 0.1620)/100] + [(106.976 × 1.568)/100] + [(105.974 × 47.14)/100] + [(103.973 × 51.13)/100]
= 0.175 + 1.677 + 49.956 + 53.161
= 104.969 amu
Therefore, the average atomic mass of the element is 104.969 amu.
O blood type is recessive hope this helps
Answer:
Re=309926.13
Explanation:
density=92.8lbm/ft3*(0.45kg/1lbm)*(1ft3/0.028m3)=1491.43kg/m3
viscosity=4.1cP*((1*10-3kg/m*s)/1cP)=0.0041kg/m*s
velocity=237ft/min*(1min/60s)*(0.3048m/1ft)=1.2m/s
diameter=28inch*(0.0254m/1inch)=0.71m
Re=(density*velocity*diameter)/viscosity=(1491.43kg/m3*1.2m/s*0.71m)/0.0041kg/m*s
Re=309926.13
The total volume of water that would be removed will be 75 mL
<h3>Dilution equation</h3>
Using the dilution equation:
M1V1 = M2V2
In this case, M1 = 500 mL, V1 = 10.20 M, M2 = 12 M
Substitute:
V2 = 500 x 10.20/12
= 425 mL
The final volume in order to arrive at 12 M HNO3 would be 425 mL from the initial 500 mL. Thus, the total amount of water that will be removed by evaporation can be calculated as:
500 - 425 = 75 mL
More on dilution can be found here: brainly.com/question/7208939