Answer: True
Explanation: There are different actions that are performed on the metal sheet . Cutting operation is the operation of splitting,slitting or parting of the metal sheet on the by using different kind of blades . Formation operation are basically for the exerting pressure on the sheet to give it desired shape such as bending, squeezing etc. Therefore the given statement is true.
Answer:
hello below is missing piece of the complete question
minimum size = 0.3 cm
answer : 0.247 N/mm2
Explanation:
Given data :
section span : 10.9 and 13.4 cm
minimum load applied evenly to the top of span : 13 N
maximum load for each member ; 4.5 N
lets take each member to be 4.2 cm
Determine the max value of P before truss fails
Taking average value of section span ≈ 12 cm
Given minimum load distributed evenly on top of section span = 13 N
we will calculate the value of by applying this formula
=
= 1.56 * 10^-5
next we will consider section ; 4.2 cm * 0.3 cm
hence Z (section modulus ) = BD^2 / 6
= ( 0.042 * 0.003^2 ) / 6 = 6.3*10^-8
Finally the max value of P( stress ) before the truss fails
= M/Z = ( 1.56 * 10^-5 ) / ( 6.3*10^-8 )
= 0.247 N/mm2
Answer:
flexibility
Explanation:
<em>Flexibility</em> is what allows an engineer to perform different tasks on the same or different projects.
__
Some employers prefer to hire engineers for non-engineering jobs, simply because they tend to be flexible, able to do different jobs with minimal or no training.
Answer:
Compressibility.
Explanation:
The compressibility of a fluid can be defined as a measure of the change in volume (density) with respect to the amount of pressure applied to the fluid. Thus, as the pressure of a compressible fluid increases, both its viscosity and density increases.
Some examples of compressible fluids are vapors, gases, air etc.
Hence, compressibility is the property that describes the amount of volume that decreases when pressure is applied to a fluid.
Additionally, the compressibility of fluids plays a significant role in the field of science such as in aerodynamics, fluid mechanics, thermodynamics etc.