Answer:
P=361.91 KN
Explanation:
given data:
brackets and head of the screw are made of material with T_fail=120 Mpa
safety factor is F.S=2.5
maximum value of force P=??
<em>solution:</em>
to find the shear stress
T_allow=T_fail/F.S
=120 Mpa/2.5
=48 Mpa
we know that,
V=P
<u>Area for shear head:</u>
A(head)=π×d×t
=π×0.04×0.075
=0.003×πm^2
<u>Area for plate:</u>
A(plate)=π×d×t
=π×0.08×0.03
=0.0024×πm^2
now we have to find shear stress for both head and plate
<u>For head:</u>
T_allow=V/A(head)
48 Mpa=P/0.003×π ..(V=P)
P =48 Mpa×0.003×π
=452.16 KN
<u>For plate:</u>
T_allow=V/A(plate)
48 Mpa=P/0.0024×π ..(V=P)
P =48 Mpa×0.0024×π
=361.91 KN
the boundary load is obtained as the minimum value of force P for all three cases. so the solution is
P=361.91 KN
note:
find the attached pic
Answer:
can u explain what we are answering?
Explanation:
A law stating that the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature.
Hope it helps
Answer:
The minimum particle diameter that is removed at 85% is 1.474 * 10 ^⁻4 meters.
Solution
Given:
Length = 48 m
Width = 12 m
Depth = 3m
Flow rate = 4 m 3 /s
Water density = 10 3 kg/m 3
Dynamic viscosity = 1.30710 -3 N.sec/m
Now,
At the minimum particular diameter it is stated as follows:
The Reynolds number= 0.1
Thus,
0.1 =ρVTD/μ
VT = Dp² ( ρp- ρ) g/ 10μ²
Where
gn = The case/issue of sedimentation
VT = Terminal velocity
So,
0.1 = Dp³ ( ρp- ρ) g/ 10μ²
This becomes,
0.1 = 1000 * dp³ (1100-1000) g 0.1/ 10 *(1.307 * 10 ^⁻3)²
= 3.074 * 10 ^⁻6 = dp³ (.g01 * 10^6)
dp³=3.1343 * 10 ^⁻12
Dp minimum= 1.474 * 10 ^⁻4 meters.