Answer:
Explanation:
Given:
Diameter of aluminum wire, D = 3mm
Temperature of aluminum wire, 
Temperature of air, 
Velocity of air flow 
The film temperature is determined as:

from the table, properties of air at 1 atm pressure
At 
Thermal conductivity,
; kinematic viscosity
; Prandtl number 
The reynolds number for the flow is determined as:

sice the obtained reynolds number is less than
, the flow is said to be laminar.
The nusselt number is determined from the relation given by:
![Nu_{cyl}= 0.3 + \frac{0.62Re^{0.5}Pr^{\frac{1}{3}}}{[1+(\frac{0.4}{Pr})^{\frac{2}{3}}]^{\frac{1}{4}}}[1+(\frac{Re}{282000})^{\frac{5}{8}}]^{\frac{4}{5}}](https://tex.z-dn.net/?f=Nu_%7Bcyl%7D%3D%200.3%20%2B%20%5Cfrac%7B0.62Re%5E%7B0.5%7DPr%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%7B%5B1%2B%28%5Cfrac%7B0.4%7D%7BPr%7D%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%5B1%2B%28%5Cfrac%7BRe%7D%7B282000%7D%29%5E%7B%5Cfrac%7B5%7D%7B8%7D%7D%5D%5E%7B%5Cfrac%7B4%7D%7B5%7D%7D)
![Nu_{cyl}= 0.3 + \frac{0.62(576.92)^{0.5}(0.70275)^{\frac{1}{3}}}{[1+(\frac{0.4}{(0.70275)})^{\frac{2}{3}}]^{\frac{1}{4}}}[1+(\frac{576.92}{282000})^{\frac{5}{8}}]^{\frac{4}{5}}\\\\=12.11](https://tex.z-dn.net/?f=Nu_%7Bcyl%7D%3D%200.3%20%2B%20%5Cfrac%7B0.62%28576.92%29%5E%7B0.5%7D%280.70275%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%7B%5B1%2B%28%5Cfrac%7B0.4%7D%7B%280.70275%29%7D%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%5B1%2B%28%5Cfrac%7B576.92%7D%7B282000%7D%29%5E%7B%5Cfrac%7B5%7D%7B8%7D%7D%5D%5E%7B%5Cfrac%7B4%7D%7B5%7D%7D%5C%5C%5C%5C%3D12.11)
The covective heat transfer coefficient is given by:

Rewrite and solve for 

The rate of heat transfer from the wire to the air per meter length is determined from the equation is given by:

The rate of heat transfer from the wire to the air per meter length is 
The coefficient of static friction is the ratio of the maximum static friction force (F) between the surfaces in contact before movement commences to the normal (N) force.
<h3>What is coefficient of static friction formula?</h3>
- The friction coefficient is the ratio of the normal force pushing two surfaces together to the frictional force preventing motion between them.
- Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.
- The ratio of the greatest static friction force (F) between the surfaces in contact before movement starts to the normal force (N) is known as the coefficient of static friction.
- A body and a surface have static and kinetic friction coefficients of 0.75 and 0.5, respectively. The body is forced to slide with a constant acceleration that is equal to A. g4 by applying a force.
Find the attachment answer.
Learn more about coefficient of static friction refer to :
brainly.com/question/25050131
#SPJ4
What do u need? Rusbaisuwvwbs
The time constant to reach full charge in an RL circuit is 0.05 ms.
Explanation:
To find the time constant,
The time constant for an RL circuit is defined by τ = L/R.
The given data is
L= 5 H
R= 100 ohms
by using the formula,
τ = L/R
= 5/100
= 0.05 ms
τ = 0.05 ms
Thus, the time constant to reach full charge in an RL circuit is 0.05 ms.