Answer with Explanation:
The general equation of simple harmonic motion is

where,
A is the amplitude of motion
is the angular frequency of the motion
is known as initial phase
part 1)
Now by definition of velocity we have

part 2)
Now by definition of acceleration we have

part 3)
The angular frequency is related to Time period 'T' as
where
is the angular frequency of the motion of the particle.
Part 4) The acceleration and velocities are plotted below
since the maximum value that the sin(x) and cos(x) can achieve in their respective domains equals 1 thus the maximum value of acceleration and velocity is
and
respectively.
Answer:
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes
Explanation:
In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:


From First law of thermodynamics:
Rate of heat transfer to river=heat transfer to power plant-work done
Rate of heat transfer to river=2000-800
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.
Answer:
The amount of energy transferred to the water is 4.214 J
Explanation:
The given parameters are;
The mass of the object that drops = 5 kg
The height from which it drops = 86 mm (0.086 m)
The potential energy P.E. is given by the following formula
P.E = m·g·h
Where;
m = The mass of the object = 5 kg
g = The acceleration de to gravity = 9.8 m/s²
h = The height from which the object is dropped = 0.086 m
Therefore;
P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J
Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;
The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.
Answer:
Technician b is correct
Explanation:
Before adjusting drive-belt tension, it is very important to check the vehicle workshop manual for specified belt tension, so that you can match your reading against the specification in the vehicle's service manual. If the tension reading you have matches the suggested reading in the vehicle's service manual and the belt is not damaged then you do not need to proceed any further. But if the reading does not match, then you can adjust the belt tension.
Therefore, technician b is correct.