1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
koban [17]
2 years ago
12

An 80-m tower is supported by a guy wire attached to the top of the tower. If the wire forms an

Mathematics
1 answer:
nalin [4]2 years ago
5 0

The Sine or Sinθ in a right-angle triangle is the ratio of its perpendicular to its Hypotenuse. The length of the wire is 81.5 meters.

<h3>What is Sine (Sinθ)?</h3>

The Sine or Sinθ in a right-angle triangle is the ratio of its perpendicular to its Hypotenuse. it is given as,

Sin(θ) = Perpendicular/Hypotenuse

where,

θ is the angle,

Perpendicular is the side of the triangle opposite to the angle θ,

The hypotenuse is the longest side of the triangle.

The length of the tower is 80 meters, while the angle of elevation is 79°. Therefore, the length of the wire will be the hypotenuse of the triangle. Therefore, the length of the wire is,

Sin(θ) = Perpendicular/Hypotenuse

Sin(79°) = 80 meter/Length of the wire

Length of the wire = 81.4973 ≈ 81.5 meters

Hence, the length of the wire is 81.5 meters.

Learn more about Sine:

brainly.com/question/21286835

#SPJ1

You might be interested in
If we wanted to measure the capacity of the waterfall and how deep it was, what unit of measure would we use?
AleksAgata [21]
Probably dept and lenght
4 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
I need help with slope (8th grade)
Triss [41]

Answer:

(y1-y2)/(x1-x2)

Step-by-step explanation:

if you have two points from the graph then you can use them to find the slope, for example:

(2,3) and (0,5)

you would take the first point and put it in a fraction (and the second point) but the x goes on the bottom and the y goes on the top:

3/2 and 5/0

Next you put them together minusing one of the equations, but make sure that the two coordinates line up (it doesn't matter which one, in the order):

3-5/2-0

Then you solve:

-2/2

-1

which means that -1 is the slope for this

(the "/" is a fraction bar, in case you didn't already know that)

5 0
3 years ago
Find the domain of the following rational expression <br> f(x)=4x-8/5
Alchen [17]
4x is the correct answer
7 0
3 years ago
ERROR ANALYSIS Describe and correct the error in
valkas [14]

Answer:

The graph should be stretched rather than become narrower.

Step-by-step explanation:

To figure this out, just create some example points.

At x = 0, your y-value will always be 0. But if you were to plug in the value 1, you would get a y-value of 1 in y=x^2, but a value of 0.5 in y=0.5x^2. If you were to plug in a value of 2, you would get a value of 4 in y=x^2, but a value of 2 in y=0.5x^2.

If you continue this pattern for a few more points, then plot them, you will see that adding a coefficient of 0.5 simply stretches the graph

3 0
2 years ago
Other questions:
  • Question 10(Multiple Choice Worth 1 points) (06.01 LC) Choose the polynomial that is written in standard form.
    10·1 answer
  • 3 Which value of x satisfies the equation<br> 5(2x - 9) + 3 =-
    7·1 answer
  • Finding distance between each pair of points. how to know which is x1 y1 and x2 y2 when using (x2-x1)^2 + (y2-y1)^2? People are
    13·1 answer
  • Find the area of this parallelogram​
    9·1 answer
  • Find the value of y. -6y+14+4y=32
    13·2 answers
  • Work out the area of a rectangle with base, <br> b<br> = 15mm and height, <br> h<br> = 12mm
    14·1 answer
  • 0.86÷2 y. 0.91÷7<br><br><br><br>ayudaaaaaaaaaaa(lo escriben en español no hablo ingles)​
    7·1 answer
  • four pieces of pie were eaten from a pie cut into equal parts. The 5 pieces that remained created an angle that measured 200°. W
    11·1 answer
  • Which ordered pair is a solution of the system of equations? y= 3x + 1 y= 5x - 1 A (2,3) © (1,2) B (0, 1) D (1,4)​
    13·1 answer
  • If line segment ab=7cm draw a perpendicular at a point c on line ab such the ac=3.5cm
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!