Answer:
2.2nC
Explanation:
Call the amount by which the spring’s unstretched length L,
the amount it stretches while hanging x1
and the amount it stretches while on the table x2.
Combining Hooke’s law with Newton’s second law, given that the stretched spring is not accelerating,
we have mg−kx1 =0, or k = mg /x1 , where k is the spring constant. On the other hand,
applying Coulomb’s law to the second part tells us ke q2/ (L+x2)2 − kx2 = 0 or q2 = kx2(L+x2)2/ke,
where ke is the Coulomb constant. Combining these,
we get q = √(mgx2(L+x2)²/x1ke =2.2nC
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2.
So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density.
So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave.
Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>
Answer:
THE RUBBER BALL
Explanation:
From the question we are told that
The mass of the rubber ball is 
The initial speed of the rubber ball is 
The final speed at which it bounces bank 
The mass of the clay ball is 
The initial speed of the clay ball is 
The final speed of the clay ball is 
Generally Impulse is mathematically represented as
where
is the change in the linear momentum so

For the rubber is


=> 
For the clay ball


=> 
So from the above calculation the ball with the a higher magnitude of impulse is the rubber ball