please, give the question properly.
Hello.
The answer would be <span> 0.5 s
Have a nice day</span>
Answer:
D. only briefly while being connected or disconnected.
Explanation:
As we know that transformer works on the principle of mutual inductance
here we know that as per the principle of mutual inductance when flux linked with the primary coil charges then it will induce EMF in secondary coil
So here when AC source is connected with primary coil then it will give output across secondary coil because AC source will have change in flux with time.
Now when we connect DC source across primary coil then it will not induce any EMF across secondary coil because DC source is a constant voltage source in which flux will remain constant always
So here in DC source the EMF will only induce at the time of connection or disconnection when flux will change in it while rest of the time it will give ZERO output
so correct answer will be
D. only briefly while being connected or disconnected.
The value was determined to be 0.122 m/s. The velocity of a body or object determines its direction of motion. Speed is a scalar quantity in its most fundamental form.
Velocity is essentially a vector quantity. It is the rate of change in distance. The initial speed of the first train, which has a mass of 150,000 kg, is 0.3 m/s. The second train has an initial speed of -0.120 m/s and a mass of 110,000 kg.
Let v represent the post-collision speed of the connected mass.
Utilize the idea of momentum.
The speed of the trains is constant both before and after a collision.
150.000 + 110.000v 45.000 - 13200 = 260.000 v 31800 = 260.000 v v = 0.122 m/s 150000 x 0.3 - 110000 x 0.120
After colliding, they move at a speed of 0.122 m/s towards the direction of the right.
Learn more about velocity here-
brainly.com/question/18084516
#SPJ4
Answer:
6.9066 × 10⁻⁵ m
Explanation:
For constructive interference, the expression is:
Where, m = 1, 2, .....
d is the distance between the slits.
The formula can be written as:
....1
The location of the bright fringe is determined by :
Where, L is the distance between the slit and the screen.
For small angle ,
So,
Formula becomes:
Using 1, we get:

Thus, the distance between the central maximum is 3.00 cm
First bright fringe , m = 1 occur at 3.00 / 2 = 1.50 cm
Since,
1 cm = 0.01 m
y = 0.0150 m
Given L = 2.00 m
λ = 518 nm
Since, 1 nm = 10⁻⁹ m
So,
λ = 518 × 10⁻⁹ m
Applying the formula as:

<u>⇒ d, distance between the slits = 6.9066 × 10⁻⁵ m</u>