<span>Each laid 250 bricks but while Jake was still working, Josh was lounging in the shade. Josh has more power but that power was only on for 3 hours out of 4.5. Obviously Josh could get more done is less time as long as he keeps working. Jake will get the hang of it soon.</span>
Answer:
No. Because it would correspond to zero Instantaneous acceleration.
Explanation:
hope this helps
Answer:
Radioactive decay is the spontaneous breakdown of an atomic nucleus resulting in the release of energy and matter from the nucleus. Remember that a radioisotope has unstable nuclei that does not have enough binding energy to hold the nucleus together.
Explanation:
The given question is incomplete. The complete question is as follows.
In a nuclear physics experiment, a proton (mass
kg, charge +e =
C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed
m/s. The proton comes momentarily to rest at a distance
m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are
m apart?
Explanation:
The given data is as follows.
Mass of proton =
kg
Charge of proton = 
Speed of proton = 
Distance traveled = 
We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.
=

where, 
U = 
Putting the given values into the above formula as follows.
U = 
= 
= 
Therefore, we can conclude that the electric potential energy of the proton and nucleus is
.
Answer:
0.31 m
Explanation:
m = mass of the block = 1.5 kg
H = height from which the block is released on ramp = 0.81 m
k = spring constant of the spring = 250 N/m
x = maximum compression of the spring
using conservation of energy
Spring potential energy gained by spring = Potential energy lost by block
(0.5) k x² = mgH
(0.5) (250) x² = (1.5) (9.8) (0.81)
x = 0.31 m