<em>The</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>p</em><em> </em><em>is</em><em> </em><em>1</em><em> </em><em>3</em><em>/</em><em>4</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
This does not appear to be a right triangle. However, we know 2 sides and the included angle, so can find the unknown side length. Let x represent this length. Then:
x^2 = (9 m)^2 + (12 m)^2 - 2(9m)(12 m)*cos 30 degrees, or
x^2 = 81 + 144 - 216(sqrt(3) / 2). Please solve for x^2 and then solve the result for x, making sure to choose the positive value. The result will be the length of the side opposite the 30 degree angle.
With 1 of 3 angles known, and 3 of 3 sides known, you can use the Law of Sines to find the other two angles. As a reminder, the Law of Sines looks like this:
a b c
-------- = --------- = ----------
sin A sin B sin C.
You can give the 30-deg angle any name you want; then a, the length of the side opposite the 30-deg angle, which you have just found. And so on.
Find the cube root of 125. ∛125 = 5. Each side length will be 5 inches.