1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pie
3 years ago
7

Discuss the production, transmission, and usage of electricity in the context of conservation of energy. When electricity is “us

ed” or we say that energy is “wasted,” what is actually happening?
Physics
1 answer:
mr Goodwill [35]3 years ago
3 0

There are huge losses in the transmission, production and usage of electricity and the reduction of these losses in order to save electricity is called as conservation of energy.

As per the statistics, there is loss of nearly 4% while the transmission of electricity. Like wise during production also, lot of electricity get wasted due to the inefficient material used. None of the production material nor the equipment used have 100% efficiency and thus there is always a possibility of energy wastage.

When it is said that the energy is wasted , it simply means that the energy production which should have been 100% as per calculation is not completely derived from the source due to the inefficient conversion process. For example, a turbine while rotating must convert 100 % of the water energy or water falling on it into electrical energy but the turbine is not able to do so as some of the water is lost or its energy is lost before conversion while going through the mechanical process.

You might be interested in
Particle motion in surface waves is __________ motion.
gulaghasi [49]
<h3>Answer;</h3>

<em>B.)neither longitudinal nor transverse</em>

<h3><u>Explanation;</u></h3>
  • <em><u>Longitudinal waves</u></em> are waves in which the vibration of particles is parallel to the direction of the wave motion.
  • <em><u>Transverse waves</u></em> on the other hand are those waves in which the vibration of particles is perpendicular to the direction of the wave motion.
  • In <em><u>surface waves particles in the medium of transmission move in a circular motion.</u></em> Therefore, they are neither transverse waves nor longitudinal waves.
7 0
3 years ago
Read 2 more answers
On a highway curve with a radius of 46 meters, the maximum force of static friction that can act on a 1,200 kg car going around
Mekhanik [1.2K]

Answer:

v\approx 16.956\,\frac{m}{s}

Explanation:

The motion of the vehicule on a highway curve can be modelled by the following equation of equilibrium:

\Sigma F = f = m\cdot \frac{v^{2}}{R}

The maximum speed is:

v = \sqrt{\frac{f\cdot R}{m} }

v = \sqrt{\frac{(7500\,N)\cdot (46\,m)}{1200\,kg} }

v\approx 16.956\,\frac{m}{s}

7 0
3 years ago
How much heat is needed to raise the temperature of 50.0 g of water by 25.0°C
love history [14]

Answer:

Explanation:

In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as

c

=

4.18

J

g

∘

C

Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.

Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of

1 g

of that substance by

1

∘

C

.

In water's case, you need to provide

4.18 J

of heat per gram of water to increase its temperature by

1

∘

C

.

What if you wanted to increase the temperature of

1 g

of water by

2

∘

C

? You'd need to provide it with

increase by 1

∘

C



4.18 J

+

increase by 1

∘

C



4.18 J

=

increase by 2

∘

C



2

×

4.18 J

To increase the temperature of

1 g

of water by

n

∘

C

, you'd need to supply it with

increase by 1

∘

C



4.18 J

+

increase by 1

∘

C



4.18 J

+

...

=

increase by n

∘

C



n

×

4.18 J

Now let's say that you wanted to cause a

1

∘

C

increase in a

2-g

sample of water. You'd need to provide it with

for 1 g of water



4.18 J

+

for 1 g of water



4.18 J

=

for 2 g of water



2

×

4.18 J

To cause a

1

∘

C

increase in the temperature of

m

grams of water, you'd need to supply it with

for 1 g of water



4.18 J

+

for 1 g of water



4.18 J

+

,,,

=

for m g of water



m

×

4.18 J

This means that in order to increase the temperature of

m

grams of water by

n

∘

C

, you need to provide it with

heat

=

m

×

n

×

specific heat

This will account for increasing the temperature of the first gram of the sample by

n

∘

C

, of the the second gram by

n

∘

C

, of the third gram by

n

∘

C

, and so on until you reach

m

grams of water.

And there you have it. The equation that describes all this will thus be

q

=

m

⋅

c

⋅

Δ

T

, where

q

- heat absorbed

m

- the mass of the sample

c

- the specific heat of the substance

Δ

T

- the change in temperature, defined as final temperature minus initial temperature

In your case, you will have

q

=

100.0

g

⋅

4.18

J

g

∘

C

⋅

(

50.0

−

25.0

)

∘

C

q

=

10,450 J

Rounded to three sig figs and expressed in kilojoules, t

Explanation:

3 0
3 years ago
Read 2 more answers
An ideal spring is mounted horizontally, with its left end fixed. The force constant of the spring is 170 N/m. A glider of mass
gizmo_the_mogwai [7]

Answer:

Explanation:

First of all we shall find the velocity at equilibrium point of mass 1.2 kg .

It will be ω A , where ω is angular frequency and A is amplitude .

ω = √ ( k / m )

= √ (170 / 1.2 )

= 11.90 rad /s

amplitude A = .045 m

velocity at middle point ( maximum velocity ) = 11.9 x .045 m /s

= .5355 m /s

At middle point , no force acts so we can apply law of conservation of momentum

m₁ v₁ = ( m₁ + m₂ ) v

1.2 x .5355 = ( 1.2 + .48 ) x v

v = .3825 m /s

= 38.25 cm /s

Let new amplitude be A₁ .

1/2 m v² = 1/2 k A₁²

( 1.2 + .48 ) x v² = 170 x A₁²

( 1.2 + .48 ) x .3825² = 170 x A₁²

A₁ = .0379 m

New amplitude is .0379 m

7 0
3 years ago
FILL IN THE BLANKS!
Aleksandr [31]
1. First blank is A. Conductors
Second blank is D. Insulators

2. C. Heat
8 0
3 years ago
Other questions:
  • Find the sum of the vectors:11 km N ,11km E
    6·1 answer
  • The amount of a good or service a
    10·1 answer
  • Suppose that a passenger intent on lunch during his first ride in a hot-air balloon accidently drops an apple over the side duri
    10·1 answer
  • Priscilla is driving her car on a busy street and Harvey passes her on his motorcycle. What will happen to the sound from his mo
    14·1 answer
  • A mine car (mass=390 kg) rolls at a speed of 0.50 m/s on a horizontal track, as the drawing shows. A 250-kg chunk of coal has a
    12·1 answer
  • In addition to possibly releasing harmful chemicals in the environment, mining is considered
    5·1 answer
  • When you push a toy car it eventually stops this is due to something called
    15·1 answer
  • A quantity of gas is contained in a sealed container of fixed volume. The temperature of the
    5·1 answer
  • In the shadow of a tree with a dense, leafy canopy, one sees a number of light spots. Surprisingly, they all appear to be circul
    6·1 answer
  • What potential difference is required across an 32 -Ω resistor to cause 33.72 A to flow through it?​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!